Bcl-2 modified adipose-derived stem cells improve the retention of fat graft. 2022

Ziwei Cui, and Qian Tan
Department of Aesthetic Surgery, the Daqing Oilfield General Hospital, Daqing, Heilongjiang, China.

In cell-assisted lipotransfer, adipose-derived stem cells play a crucial role in enhancing fat graft retention. In vitro, human adipose-derived stem cells were modified with Bcl-2 gene. In vivo, aspirated fat was mixed with the Bcl-2-modified adipose-derived stem cells and then transplanted subcutaneously into nude mice. The retention of fat graft was evaluated. The surviving Bcl-2-modified adipose-derived stem cells were tracked after transplantation. Capillary density was quantified after transplantation. Transplantation with Bcl-2-modified adipose-derived stem cells enhanced fat graft retention by 49% and 114% at 6 weeks compared with the Fat + vector-modified adipose-derived stem cell group and Fat-only group, respectively. Transplants from the Fat + Bcl-2-modified adipose-derived stem cell group had significantly more intact adipocytes and lower levels of fat necrosis and fibrosis at 6 weeks. The survival of Bcl-2-modified adipose-derived stem cells increased by 33% at 3 weeks and 54% at 6 weeks, respectively, compared with vector-modified adipose-derived stem cells. The capillary density was 24% higher in Fat + Bcl-2-modified adipose-derived stem cell group than in Fat + vector-modified adipose-derived stem cell group or 60% higher than in Fat-only group at 3 weeks.

UI MeSH Term Description Entries
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D017667 Adipocytes Cells in the body that store FATS, usually in the form of TRIGLYCERIDES. WHITE ADIPOCYTES are the predominant type and found mostly in the abdominal cavity and subcutaneous tissue. BROWN ADIPOCYTES are thermogenic cells that can be found in newborns of some species and hibernating mammals. Fat Cells,Lipocytes,Adipocyte,Cell, Fat,Cells, Fat,Fat Cell,Lipocyte
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Ziwei Cui, and Qian Tan
March 2023, Plastic and reconstructive surgery,
Ziwei Cui, and Qian Tan
July 2022, Stem cells translational medicine,
Ziwei Cui, and Qian Tan
June 2020, The international journal of lower extremity wounds,
Copied contents to your clipboard!