Tactile discrimination of shape: responses of slowly adapting mechanoreceptor afferents to a step stroked across the monkey fingerpad. 1987

R H LaMotte, and M A Srinivasan

The representation of shape in the responses of slowly adapting mechanoreceptive afferent fibers (SAs) in monkeys was investigated. A series of flat plates was used, each having an increase in thickness (a step) in the middle so that one-half of the plate was thicker than the other. The cross-sectional shape of the step approximated that of a half-cycle of a sinusoid. The height of the step was fixed at 0.5 mm, while its width (half-cycle wavelength) was varied from 0 to 3.13 mm, resulting in step shapes that varied in steepness and curvature. The steps fell into 2 categories, characterized as "steep" and "gradual." A servocontrolled mechanical stimulator stroked each step across the distal fingerpad from the high to the low side of the step and back, while maintaining the contact force at 20 gm wt. Evoked action potentials in single SAs innervating the fingerpads of anesthetized monkeys were recorded. Each SA's response to a step provided a spatial response profile (discharge rate as a function of step position) that reflected the distribution of curvature across the step shape. All the major features of the SA response could be consistently explained as being due to the sensitivity of the SA to the amount and rate of change in skin curvature. The response profile was altered by changes in stroke direction, step shape, and stroke velocity. Differences in stroke direction (back and forth) were indicated by differences in pattern of response: a "burst-pause-burst" for strokes from high to low, and a "pause-burst-pause" for strokes from low to high; a greater discharge rate in response to the step for low to high strokes, and for some SAs, the reduction or absence of basal discharge in one of the directions. The discharge rate during the burst for either direction of stroking was greater for steep than for gradual steps, and increased, for a given step shape, with increases in stroke velocity. Regardless of differences in stroke velocity, steep steps were distinguished from gradual steps by having narrower burst widths for low-to-high strokes and narrower pause widths for high-to-low strokes. The same stimuli were delivered to the human fingerpad, and the capacities of humans to discriminate between the steps were measured. It was concluded that the spatial features of SA responses, representing the widths of regions of active and inactive SA populations, as well as the intensive feature of discharge rate, accounted for the gross sensory discriminations of shape.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D005385 Fingers Four or five slender jointed digits in humans and primates, attached to each HAND. Finger
D005556 Form Perception The sensory discrimination of a pattern, shape, or outline. Contour Perception,Contour Perceptions,Form Perceptions,Perception, Contour,Perception, Form,Perceptions, Contour,Perceptions, Form
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R H LaMotte, and M A Srinivasan
November 1995, Mathematical biosciences,
R H LaMotte, and M A Srinivasan
September 1973, Brain research,
R H LaMotte, and M A Srinivasan
March 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R H LaMotte, and M A Srinivasan
January 1999, Biological signals and receptors,
R H LaMotte, and M A Srinivasan
July 1995, Perception & psychophysics,
R H LaMotte, and M A Srinivasan
March 1977, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
Copied contents to your clipboard!