Tactile discrimination of shape: responses of slowly and rapidly adapting mechanoreceptive afferents to a step indented into the monkey fingerpad. 1987

M A Srinivasan, and R H LaMotte

The representation of shape in the responses of monkey cutaneous mechanoreceptive afferents to steps of varying shape vertically indented into the fingerpad was studied. A series of flat plates was used, each with a step change in thickness in the middle so that one-half of the plate was thicker than the other. The cross-sectional shape of the step approximated that of a half-cycle sinusoid, 0.5 mm high, that was varied in half-cycle wavelength (step width) and hence in steepness and curvature. The steps fell into 2 categories, characterized as "steep" and "'gradual." Evoked action potentials were recorded from single, slowly adapting and from rapidly adapting Meissner corpuscle mechanoreceptive afferent fibers (SA and RA, respectively) innervating the fingerpad of the anesthetized monkey while each step was indented at a succession of lateral positions across the fiber's receptive field. The responses of each SA provided a spatial response profile (number of evoked impulses as a function of step position) that was directly related to the variation in curvature across the step. The rate of discharge was greatest under the sharpest (convex) portion of the step, least under the adjacent concave portion, and intermediate under the flat portions of the steps. The results indicated an exquisite sensitivity of the SA, even during the ramp phase of vertical indentation, to the changes in skin curvature. The spatial response profile remained relatively undistorted over time during the ensuing steady phase, while the contrast between the peak and the minimum response improved. RAs responded only during the ramp phase and with fewer responses, and gave rise to a poorly modulated spatial response profile, even though half of the RAs tested showed limited sensitivity to the amount or rate of change of skin curvature. It was hypothesized that RA responses are predominantly influenced by the vertical velocity of the most sensitive spot in the receptive field. When the same step stimuli were applied to the human fingerpad, the capacities of humans to discriminate differences in step shape were found to correlate with the discriminability of SAs, as opposed to the considerably poorer discriminability of RAs. It is concluded that information concerning the local curvature and hence the shape of objects indenting the skin is primarily coded by the SAs. In the 2 preceding papers (LaMotte and Srinivasan, 1987a, b), we investigated the responses of SAs and RAs to the same sinusoidal steps stroked back and forth across the fingerpad under constant compressional force.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D005385 Fingers Four or five slender jointed digits in humans and primates, attached to each HAND. Finger
D005556 Form Perception The sensory discrimination of a pattern, shape, or outline. Contour Perception,Contour Perceptions,Form Perceptions,Perception, Contour,Perception, Form,Perceptions, Contour,Perceptions, Form
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

M A Srinivasan, and R H LaMotte
March 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M A Srinivasan, and R H LaMotte
January 2003, Somatosensory & motor research,
M A Srinivasan, and R H LaMotte
January 2002, Journal of computational neuroscience,
M A Srinivasan, and R H LaMotte
April 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M A Srinivasan, and R H LaMotte
November 1995, Mathematical biosciences,
M A Srinivasan, and R H LaMotte
November 2000, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society,
M A Srinivasan, and R H LaMotte
June 2006, Journal of neurophysiology,
Copied contents to your clipboard!