A fast GPU-accelerated Monte Carlo engine for calculation of MLC-collimated electron fields. 2023

Eric E Brost, and H Wan Chan Tseung, and John A Antolak
Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA.

BACKGROUND Although intensity-modulated radiation therapy and volumetric arc therapy have revolutionized photon external beam therapies, the technological advances associated with electron beam therapy have fallen behind. Modern linear accelerators contain technologies that would allow for more advanced forms of electron treatments, such as beam collimation, using the conventional photon multi-leaf collimator (MLC); however, no commercial solutions exist that calculate dose from such beam delivery modes. Additionally, for clinical adoption to occur, dose calculation times would need to be on par with that of modern dose calculation algorithms. OBJECTIVE This work developed a graphics processing unit (GPU)-accelerated Monte Carlo (MC) engine incorporating the Varian TrueBeam linac head geometry for a rapid calculation of electron beams collimated using the conventional photon MLC. METHODS A compute unified device architecture framework was created for the following: (1) transport of electrons and photons through the linac head geometry, considering multiple scattering, Bremsstrahlung, Møller, Compton, and pair production interactions; (2) electron and photon propagation through the CT geometry, considering all interactions plus the photoelectric effect; and (3) secondary particle cascades through the linac head and within the CT geometry. The linac head collimating geometry was modeled according to the specifications provided by the vendor, who also provided phase-space files. The MC was benchmarked against EGSnrc/DOSXYZnrc/GEANT by simulating individual interactions with simple geometries, pencil, and square beam dose calculations in various phantoms. MC-calculated dose distributions for MLC and jaw-collimated electron fields were compared to measurements in a water phantom and with radiochromic film. RESULTS Pencil and square beam dose distributions are in good agreement with DOSXYZnrc. Angular and spatial distributions for multiple scattering and secondary particle production in thin slab geometries are in good agreement with EGSnrc and GEANT. Dose profiles for MLC and jaw-collimated 6-20-MeV electron beams showed an average absolute difference of 1.1 and 1.9 mm for the FWHM and 80%-20% penumbra from measured profiles. Percent depth doses showed differences of <5% for as compared to measurement. The computation time on an NVIDIA Tesla V100 card was 2.5 min to achieve a dose uncertainty of <1%, which is ∼300 times faster than published results in a similar geometry using a single-CPU core. CONCLUSIONS The GPU-based MC can quickly calculate dose for electron fields collimated using the conventional photon MLC. The fast calculation times will allow for a rapid calculation of electron fields for mixed photon and electron particle therapy.

UI MeSH Term Description Entries
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D010315 Particle Accelerators Devices which accelerate electrically charged atomic or subatomic particles, such as electrons, protons or ions, to high velocities so they have high kinetic energy. Betatrons,Linear Accelerators,Accelerator, Linear,Accelerator, Particle,Accelerators, Linear,Accelerators, Particle,Betatron,Linear Accelerator,Particle Accelerator
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D004583 Electrons Stable elementary particles having the smallest known negative charge, present in all elements; also called negatrons. Positively charged electrons are called positrons. The numbers, energies and arrangement of electrons around atomic nuclei determine the chemical identities of elements. Beams of electrons are called CATHODE RAYS. Fast Electrons,Negatrons,Positrons,Electron,Electron, Fast,Electrons, Fast,Fast Electron,Negatron,Positron
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D017785 Photons Discrete concentrations of energy, apparently massless elementary particles, that move at the speed of light. They are the unit or quantum of electromagnetic radiation. Photons are emitted when electrons move from one energy state to another. (From Hawley's Condensed Chemical Dictionary, 11th ed)
D050397 Radiotherapy, Intensity-Modulated CONFORMAL RADIOTHERAPY that combines several intensity-modulated beams to provide improved dose homogeneity and highly conformal dose distributions. Helical Tomotherapy,Intensity-Modulated Arc Therapy,Volumetric-Modulated Arc Therapy,Arc Therapies, Intensity-Modulated,Arc Therapies, Volumetric-Modulated,Arc Therapy, Intensity-Modulated,Arc Therapy, Volumetric-Modulated,Helical Tomotherapies,Intensity Modulated Arc Therapy,Intensity-Modulated Arc Therapies,Intensity-Modulated Radiotherapies,Intensity-Modulated Radiotherapy,Radiotherapies, Intensity-Modulated,Radiotherapy, Intensity Modulated,Therapies, Intensity-Modulated Arc,Therapies, Volumetric-Modulated Arc,Therapy, Intensity-Modulated Arc,Therapy, Volumetric-Modulated Arc,Tomotherapies, Helical,Tomotherapy, Helical,Volumetric Modulated Arc Therapy,Volumetric-Modulated Arc Therapies
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

Eric E Brost, and H Wan Chan Tseung, and John A Antolak
February 2011, Physics in medicine and biology,
Eric E Brost, and H Wan Chan Tseung, and John A Antolak
June 2022, Physics in medicine and biology,
Eric E Brost, and H Wan Chan Tseung, and John A Antolak
November 2010, Medical physics,
Eric E Brost, and H Wan Chan Tseung, and John A Antolak
August 2023, Medical physics,
Eric E Brost, and H Wan Chan Tseung, and John A Antolak
November 2011, Physics in medicine and biology,
Eric E Brost, and H Wan Chan Tseung, and John A Antolak
December 2012, Physics in medicine and biology,
Eric E Brost, and H Wan Chan Tseung, and John A Antolak
February 2002, Physics in medicine and biology,
Eric E Brost, and H Wan Chan Tseung, and John A Antolak
October 2015, Physics in medicine and biology,
Eric E Brost, and H Wan Chan Tseung, and John A Antolak
January 2016, International journal of particle therapy,
Eric E Brost, and H Wan Chan Tseung, and John A Antolak
February 2023, Physics in medicine and biology,
Copied contents to your clipboard!