The Molecular Architecture of Pseudomonas aeruginosa Quorum-Sensing Inhibitors. 2022

Qiaoqiang Li, and Shen Mao, and Hong Wang, and Xinyi Ye
Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China.

The survival selection pressure caused by antibiotic-mediated bactericidal and bacteriostatic activity is one of the important inducements for bacteria to develop drug resistance. Bacteria gain drug resistance through spontaneous mutation so as to achieve the goals of survival and reproduction. Quorum sensing (QS) is an intercellular communication system based on cell density that can regulate bacterial virulence and biofilm formation. The secretion of more than 30 virulence factors of P. aeruginosa is controlled by QS, and the formation and diffusion of biofilm is an important mechanism causing the multidrug resistance of P. aeruginosa, which is also closely related to the QS system. There are three main QS systems in P. aeruginosa: las system, rhl system, and pqs system. Quorum-sensing inhibitors (QSIs) can reduce the toxicity of bacteria without affecting the growth and enhance the sensitivity of bacterial biofilms to antibiotic treatment. These characteristics make QSIs a popular topic for research and development in the field of anti-infection. This paper reviews the research progress of the P. aeruginosa quorum-sensing system and QSIs, targeting three QS systems, which will provide help for the future research and development of novel quorum-sensing inhibitors.

UI MeSH Term Description Entries
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D053038 Quorum Sensing A phenomenon where microorganisms communicate and coordinate their behavior by the accumulation of signaling molecules. A reaction occurs when a substance accumulates to a sufficient concentration. This is most commonly seen in bacteria. Quorum Quenching,Quenching, Quorum,Quenchings, Quorum,Quorum Quenchings,Sensing, Quorum
D018441 Biofilms Encrustations formed from microbes (bacteria, algae, fungi, plankton, or protozoa) embedded in an EXTRACELLULAR POLYMERIC SUBSTANCE MATRIX that is secreted by the microbes. They occur on body surfaces such as teeth (DENTAL DEPOSITS); inanimate objects, and bodies of water. Biofilms are prevented from forming by treating surfaces with DENTIFRICES; DISINFECTANTS; ANTI-INFECTIVE AGENTS; and anti-fouling agents. Biofilm
D037521 Virulence Factors Those components of an organism that determine its capacity to cause disease but are not required for its viability per se. Two classes have been characterized: TOXINS, BIOLOGICAL and surface adhesion molecules that effect the ability of the microorganism to invade and colonize a host. (From Davis et al., Microbiology, 4th ed. p486) Pathogenicity Factor,Pathogenicity Factors,Virulence Factor,Factor, Pathogenicity,Factor, Virulence,Factors, Pathogenicity,Factors, Virulence

Related Publications

Qiaoqiang Li, and Shen Mao, and Hong Wang, and Xinyi Ye
May 2010, Biotechnology and bioengineering,
Qiaoqiang Li, and Shen Mao, and Hong Wang, and Xinyi Ye
January 2022, Advances in experimental medicine and biology,
Qiaoqiang Li, and Shen Mao, and Hong Wang, and Xinyi Ye
August 2003, The EMBO journal,
Qiaoqiang Li, and Shen Mao, and Hong Wang, and Xinyi Ye
January 2018, Frontiers in cellular and infection microbiology,
Qiaoqiang Li, and Shen Mao, and Hong Wang, and Xinyi Ye
October 2017, Microbial pathogenesis,
Qiaoqiang Li, and Shen Mao, and Hong Wang, and Xinyi Ye
July 2009, Applied microbiology and biotechnology,
Qiaoqiang Li, and Shen Mao, and Hong Wang, and Xinyi Ye
February 2015, ACS medicinal chemistry letters,
Qiaoqiang Li, and Shen Mao, and Hong Wang, and Xinyi Ye
August 2009, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
Qiaoqiang Li, and Shen Mao, and Hong Wang, and Xinyi Ye
August 2007, Journal of chemotherapy (Florence, Italy),
Qiaoqiang Li, and Shen Mao, and Hong Wang, and Xinyi Ye
February 2009, Environmental microbiology,
Copied contents to your clipboard!