Electron microscopic heteroduplex analysis of "killer" double-stranded RNA species from yeast. 1978

H M Fried, and G R Fink

Wild-type and mutant double-stranded RNA (dsRNA) species from the yeast Saccharomyces cerevisiae were studied by electron microscopic heteroduplex mapping to determine the sequence relationships among the different RNA molecules. Three mutant dsRNAs, 1.5, 1.4, and 0.73 kilobase, were found to be derived by the same internal deletion of the wild-type (I83 kilobases) molecule. This deletion includes a wild-type (1.83 kilobases) molecule. This deletion includes a segment of about 200 base pairs that was estimated to be nearly 100% A+U. In addition, the sequences of the two larger mutant RNA species are tandem, direct duplications. One of the duplicated molecules appears to have a second internal deletion that occurred after the duplication. The mutant dsRNAs are functionally similar to the defective interfering virus particles of animal viruses--all of the mutant species prevent the propagation of the wild-type dsRNA when both are present in the same cell. The four dsRNAs share the same sequences at their termini, a finding that may suggest that these sequences are important for the replication of the dsRNAs.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009691 Nucleic Acid Denaturation Disruption of the secondary structure of nucleic acids by heat, extreme pH or chemical treatment. Double strand DNA is "melted" by dissociation of the non-covalent hydrogen bonds and hydrophobic interactions. Denatured DNA appears to be a single-stranded flexible structure. The effects of denaturation on RNA are similar though less pronounced and largely reversible. DNA Denaturation,DNA Melting,RNA Denaturation,Acid Denaturation, Nucleic,Denaturation, DNA,Denaturation, Nucleic Acid,Denaturation, RNA,Nucleic Acid Denaturations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

H M Fried, and G R Fink
July 1979, Plasmid,
H M Fried, and G R Fink
September 1972, Nature,
H M Fried, and G R Fink
January 1986, Annual review of biochemistry,
H M Fried, and G R Fink
November 1982, Current genetics,
H M Fried, and G R Fink
February 1982, Proceedings of the National Academy of Sciences of the United States of America,
H M Fried, and G R Fink
April 1981, Biochemical and biophysical research communications,
H M Fried, and G R Fink
September 1982, Biochemical and biophysical research communications,
H M Fried, and G R Fink
March 1982, Nucleic acids research,
Copied contents to your clipboard!