Rate of macromolecular synthesis through the cell cycle of the yeast Saccharomyces cerevisiae. 1978

S G Elliott, and C S McLaughlin

Centrifugal elutriation was used to separate cells of Saccharomyces cerevisiae in balanced exponential growth according to position in the cell cycle. Macromolecular synthesis was examined. DNA synthesis was found to be periodic, but RNA and protein synthesis showed an exponential increase in rate. Two-dimensional electrophoresis was used to determine the rate of synthesis of individual proteins, with 111 of the more abundant cellular proteins selected for analysis from among the more than 1000 proteins that migrate in the system. All the examined proteins showed an exponentially increasing rate of synthesis.

UI MeSH Term Description Entries
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002498 Centrifugation Process of using a rotating machine to generate centrifugal force to separate substances of different densities, remove moisture, or simulate gravitational effects. It employs a large motor-driven apparatus with a long arm, at the end of which human and animal subjects, biological specimens, or equipment can be revolved and rotated at various speeds to study gravitational effects. (From Websters, 10th ed; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

S G Elliott, and C S McLaughlin
July 1988, The Journal of biological chemistry,
S G Elliott, and C S McLaughlin
December 1981, Experimental cell research,
S G Elliott, and C S McLaughlin
January 1971, Biochemical and biophysical research communications,
S G Elliott, and C S McLaughlin
January 1997, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer,
S G Elliott, and C S McLaughlin
November 1974, Experimental cell research,
S G Elliott, and C S McLaughlin
December 1988, Microbiological reviews,
S G Elliott, and C S McLaughlin
March 1973, Journal of bacteriology,
S G Elliott, and C S McLaughlin
June 1974, Bacteriological reviews,
S G Elliott, and C S McLaughlin
April 1974, Experimental cell research,
S G Elliott, and C S McLaughlin
August 1973, FEBS letters,
Copied contents to your clipboard!