Neuroprotection of Bone Marrow-Derived Mesenchymal Stem Cell-Derived Extracellular Vesicle-Enclosed miR-410 Correlates with HDAC4 Knockdown in Hypoxic-Ischemic Brain Damage. 2022

Mingqi Shen, and Rongxiu Zheng, and Xuan Kan
Department of Pediatrics, General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin, 300050, People's Republic of China. doctormingqi@163.com.

Evidence exists reporting that miR-410 may rescue neurological deficits, neuronal injury, and neuronal apoptosis after experimental hypoxic ischemia. This study aimed to explore the mechanism by which miR-410 transferred by bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) may alleviate hypoxic-ischemic brain damage (HIBD) in newborn mice. BMSCs were isolated from total bone marrow cells of femur and tibia of newborn mice, and primary neurons were extracted from the cerebral cortex of newborn mice within 24 h of birth. EVs were extracted from BMSCs transfected with the mimic or inhibitor of miR-410. Primary neurons were subjected to hypoxia and treated with overexpression (oe)-HDAC4, small interfering RNA (siRNA)-β-catenin, or Wnt pathway inhibitor and/or EV (miR-410 mimic) or EV (miR-410 inhibitor). A neonatal mouse HIBD model was established and treated with EVs. When BMSC-EVs were endocytosed by primary neurons, miR-410 was upregulated, neuronal viability was elevated, and apoptosis was inhibited. miR-410 in BMSC-EVs targeted HDAC4, thus increasing neuronal viability and reducing apoptosis. Conversely, overexpression of HDAC4 activated the Wnt pathway and enhanced the nuclear translocation of β-catenin. Treatment with miR-410-containing BMSC-EVs improved learning and memory abilities of HIBD mice while attenuating apoptosis by inactivating the Wnt pathway via targeting HDAC4. Taken together, the findings suggest that miR-410 delivered by BMSC-EVs alleviates HIBD by inhibiting HDAC4-dependent Wnt pathway activation.

UI MeSH Term Description Entries
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006655 Histone Deacetylases Deacetylases that remove N-acetyl groups from amino side chains of the amino acids of HISTONES. The enzyme family can be divided into at least three structurally-defined subclasses. Class I and class II deacetylases utilize a zinc-dependent mechanism. The sirtuin histone deacetylases belong to class III and are NAD-dependent enzymes. Class I Histone Deacetylases,Class II Histone Deacetylases,HDAC Proteins,Histone Deacetylase,Histone Deacetylase Complexes,Complexes, Histone Deacetylase,Deacetylase Complexes, Histone,Deacetylase, Histone,Deacetylases, Histone
D000066829 Neuroprotection The physiological processes and techniques used by the body to prevent neuronal injury and degeneration in the central nervous system following acute disorders or as a result of chronic neurodegenerative diseases. Neural Protection,Neuron Protection,Neuronal Protection,Protection, Neural,Protection, Neuron,Protection, Neuronal
D000067128 Extracellular Vesicles Membrane limited structures derived from cell membranes and cytoplasmic material, and released into EXTRACELLULAR SPACE. They circulate through the EXTRACELLULAR FLUID and through the peripheral blood in the MICROVASCULATURE where cells, much larger, cannot, thereby affecting a variety of intercellular communication processes. Apoptotic Bodies,Exovesicles,Apoptotic Body,Bodies, Apoptotic,Body, Apoptotic,Exovesicle,Extracellular Vesicle,Vesicle, Extracellular,Vesicles, Extracellular
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D051176 beta Catenin A multi-functional catenin that participates in CELL ADHESION and nuclear signaling. Beta catenin binds CADHERINS and helps link their cytoplasmic tails to the ACTIN in the CYTOSKELETON via ALPHA CATENIN. It also serves as a transcriptional co-activator and downstream component of WNT PROTEIN-mediated SIGNAL TRANSDUCTION PATHWAYS. beta-Catenin,Catenin, beta
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D059630 Mesenchymal Stem Cells Mesenchymal stem cells, also referred to as multipotent stromal cells or mesenchymal stromal cells are multipotent, non-hematopoietic adult stem cells that are present in multiple tissues, including BONE MARROW; ADIPOSE TISSUE; and WHARTON JELLY. Mesenchymal stem cells can differentiate into mesodermal lineages, such as adipocytic, osteocytic and chondrocytic. Adipose Tissue-Derived Mesenchymal Stem Cell,Adipose Tissue-Derived Mesenchymal Stromal Cell,Adipose-Derived Mesenchymal Stem Cell,Bone Marrow Mesenchymal Stem Cell,Mesenchymal Stromal Cell,Mesenchymal Stromal Cells,Multipotent Bone Marrow Stromal Cell,Multipotent Mesenchymal Stromal Cell,Adipose Tissue-Derived Mesenchymal Stem Cells,Adipose Tissue-Derived Mesenchymal Stromal Cells,Adipose-Derived Mesenchymal Stem Cells,Adipose-Derived Mesenchymal Stromal Cells,Bone Marrow Mesenchymal Stem Cells,Bone Marrow Stromal Cell,Bone Marrow Stromal Cells,Bone Marrow Stromal Cells, Multipotent,Bone Marrow Stromal Stem Cells,Mesenchymal Progenitor Cell,Mesenchymal Progenitor Cells,Mesenchymal Stem Cell,Mesenchymal Stem Cells, Adipose-Derived,Mesenchymal Stromal Cells, Multipotent,Multipotent Bone Marrow Stromal Cells,Multipotent Mesenchymal Stromal Cells,Stem Cells, Mesenchymal,Wharton Jelly Cells,Wharton's Jelly Cells,Adipose Derived Mesenchymal Stem Cell,Adipose Derived Mesenchymal Stem Cells,Adipose Derived Mesenchymal Stromal Cells,Adipose Tissue Derived Mesenchymal Stem Cell,Adipose Tissue Derived Mesenchymal Stem Cells,Adipose Tissue Derived Mesenchymal Stromal Cell,Adipose Tissue Derived Mesenchymal Stromal Cells,Mesenchymal Stem Cells, Adipose Derived,Progenitor Cell, Mesenchymal,Progenitor Cells, Mesenchymal,Stem Cell, Mesenchymal,Stromal Cell, Mesenchymal,Stromal Cells, Mesenchymal,Wharton's Jelly Cell,Whartons Jelly Cells

Related Publications

Mingqi Shen, and Rongxiu Zheng, and Xuan Kan
February 2014, Neural regeneration research,
Mingqi Shen, and Rongxiu Zheng, and Xuan Kan
September 2020, Brain research bulletin,
Mingqi Shen, and Rongxiu Zheng, and Xuan Kan
January 2020, Frontiers in cell and developmental biology,
Mingqi Shen, and Rongxiu Zheng, and Xuan Kan
January 2024, Regenerative medicine,
Copied contents to your clipboard!