Regional brain calcium changes in the rat middle cerebral artery occlusion model of ischemia. 1987

Z H Rappaport, and W Young, and E S Flamm

Entry of Ca ions into ischemic neurons is believed to cause cell damage. Although several investigators have demonstrated changes in extracellular Ca ionic activity consistent with Ca movement into cells, direct and quantitative evidence for Ca entry into ischemic cells is lacking. We used atomic absorption spectroscopy to measure the regional distribution of tissue Ca contents of rat brains sampled at 2, 4, and 24 hours after middle cerebral artery occlusion (MCAo). At 4 hours after MCAo, Ca concentrations increased significantly (p less than 0.005) in the ischemic middle cerebral artery territory, i.e., the pyriform and frontoparietal cortices, but not in the surrounding brain. At 24 hours, Ca concentrations in the pyriform and frontoparietal cortex were respectively 30.79 (+/- 2.90) and 29.19 (+/- 3.28) mumol/g dry tissue wt compared with 11.9 (+/- 1.7) mumol/g in sham-occluded rats. Tissue Ca concentration changes in the parasagittal cortex and basal ganglia adjacent to the infarct site were much smaller and did not differ significantly from controls until 24 hours. In the ischemic middle cerebral artery territory, greater than 1.0 mumoles of Ca entered per gram of dry tissue weight per hour during the first 4 hours after MCAo. Linear regression analysis revealed a significant correlation (r = 0.9722) between changes in tissue Ca and water, with a slope indicating that 5.88 mumoles of Ca accompanied each milliliter of water entering the lesioned hemisphere. Such massive accumulations of Ca not only confirm Ca entry into injured cells, but indicate the presence of a remarkable Ca sink which sequestered within 24 hours more than 17 times the amount of free Ca present in the tissue before MCAo.

UI MeSH Term Description Entries
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002536 Cerebral Arteries The arterial blood vessels supplying the CEREBRUM. Arteries, Cerebral,Artery, Cerebral,Cerebral Artery
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

Z H Rappaport, and W Young, and E S Flamm
February 1988, Zhonghua shen jing jing shen ke za zhi = Chinese journal of neurology and psychiatry,
Z H Rappaport, and W Young, and E S Flamm
November 1985, No to shinkei = Brain and nerve,
Z H Rappaport, and W Young, and E S Flamm
January 2024, Methods in molecular biology (Clifton, N.J.),
Z H Rappaport, and W Young, and E S Flamm
January 2014, Methods in molecular biology (Clifton, N.J.),
Z H Rappaport, and W Young, and E S Flamm
February 2011, Journal of visualized experiments : JoVE,
Z H Rappaport, and W Young, and E S Flamm
January 1995, Journal of the neurological sciences,
Z H Rappaport, and W Young, and E S Flamm
October 2010, Acta cirurgica brasileira,
Z H Rappaport, and W Young, and E S Flamm
January 2012, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Copied contents to your clipboard!