[DNA methylation in experimental ischemic brain injury]. 2022

N S Shcherbak, and I O Suchkova, and E L Patkin, and I A Voznyuk
Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia.

The enrichment of angioneurology with fundamental advances leads to the understanding of new important facets in the pathogenesis of cerebral ischemia. The knowledge of epigenetic mechanisms in the development of stroke, in particular, DNA methylation, which makes a significant contribution to the development and formation of cerebral damage, is becoming more and more relevant. This review reflects an analysis of animal studies proving the relationship of DNA methylation with cerebral ischemia. As a result of the search work, 282 articles from the PubMed database were selected for keywords that corresponded to this topic. Of these publications, 8 studies were devoted to genome-wide DNA methylation, and 6 published the results of DNA methylation of candidate genes in experimental cerebral ischemia. The results have demonstrated that brain DNA methylation in animals is associated with the development of ischemic stroke and may play a role in several pathogenetic mechanisms. In two studies, a decrease in the level of DNA methylation in 2 genes in ischemic brain tissues of laboratory animals was found, at the same time, in four studies, 8 genes, in which methylation increased after ischemic stroke, were reported. These data suggest that the assessment of the level of DNA methylation in stroke is a promising biomarker for the search and improvement of pharmacological and non-pharmacological methods for limiting brain damage in ischemic and reperfusion injury at the stages of preclinical and clinical studies.

UI MeSH Term Description Entries
D007511 Ischemia A hypoperfusion of the BLOOD through an organ or tissue caused by a PATHOLOGIC CONSTRICTION or obstruction of its BLOOD VESSELS, or an absence of BLOOD CIRCULATION. Ischemias
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D000083242 Ischemic Stroke Stroke due to BRAIN ISCHEMIA resulting in interruption or reduction of blood flow to a part of the brain. When obstruction is due to a BLOOD CLOT formed within in a cerebral blood vessel it is a thrombotic stroke. When obstruction is formed elsewhere and moved to block a cerebral blood vessel (see CEREBRAL EMBOLISM) it is referred to as embolic stroke. Wake-up stroke refers to ischemic stroke occurring during sleep while cryptogenic stroke refers to ischemic stroke of unknown origin. Acute Ischemic Stroke,Cryptogenic Embolism Stroke,Cryptogenic Ischemic Stroke,Cryptogenic Stroke,Ischaemic Stroke,Wake-up Stroke,Acute Ischemic Strokes,Cryptogenic Embolism Strokes,Cryptogenic Ischemic Strokes,Cryptogenic Strokes,Embolism Stroke, Cryptogenic,Ischaemic Strokes,Ischemic Stroke, Acute,Ischemic Stroke, Cryptogenic,Ischemic Strokes,Stroke, Acute Ischemic,Stroke, Cryptogenic,Stroke, Cryptogenic Embolism,Stroke, Cryptogenic Ischemic,Stroke, Ischaemic,Stroke, Ischemic,Stroke, Wake-up,Wake up Stroke,Wake-up Strokes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D019175 DNA Methylation Addition of methyl groups to DNA. DNA methyltransferases (DNA methylases) perform this reaction using S-ADENOSYLMETHIONINE as the methyl group donor. DNA Methylations,Methylation, DNA,Methylations, DNA
D020521 Stroke A group of pathological conditions characterized by sudden, non-convulsive loss of neurological function due to BRAIN ISCHEMIA or INTRACRANIAL HEMORRHAGES. Stroke is classified by the type of tissue NECROSIS, such as the anatomic location, vasculature involved, etiology, age of the affected individual, and hemorrhagic vs. non-hemorrhagic nature. (From Adams et al., Principles of Neurology, 6th ed, pp777-810) Apoplexy,Cerebral Stroke,Cerebrovascular Accident,Cerebrovascular Apoplexy,Vascular Accident, Brain,CVA (Cerebrovascular Accident),Cerebrovascular Accident, Acute,Cerebrovascular Stroke,Stroke, Acute,Acute Cerebrovascular Accident,Acute Cerebrovascular Accidents,Acute Stroke,Acute Strokes,Apoplexy, Cerebrovascular,Brain Vascular Accident,Brain Vascular Accidents,CVAs (Cerebrovascular Accident),Cerebral Strokes,Cerebrovascular Accidents,Cerebrovascular Accidents, Acute,Cerebrovascular Strokes,Stroke, Cerebral,Stroke, Cerebrovascular,Strokes,Strokes, Acute,Strokes, Cerebral,Strokes, Cerebrovascular,Vascular Accidents, Brain

Related Publications

N S Shcherbak, and I O Suchkova, and E L Patkin, and I A Voznyuk
November 2010, Steroids,
N S Shcherbak, and I O Suchkova, and E L Patkin, and I A Voznyuk
May 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
N S Shcherbak, and I O Suchkova, and E L Patkin, and I A Voznyuk
August 2015, Journal of neurotrauma,
N S Shcherbak, and I O Suchkova, and E L Patkin, and I A Voznyuk
August 2017, Journal of neurotrauma,
N S Shcherbak, and I O Suchkova, and E L Patkin, and I A Voznyuk
July 2021, Neurochemistry international,
N S Shcherbak, and I O Suchkova, and E L Patkin, and I A Voznyuk
November 2005, Experimental brain research,
N S Shcherbak, and I O Suchkova, and E L Patkin, and I A Voznyuk
December 2013, Neurobiology of disease,
N S Shcherbak, and I O Suchkova, and E L Patkin, and I A Voznyuk
May 2019, Neuroscience,
N S Shcherbak, and I O Suchkova, and E L Patkin, and I A Voznyuk
January 2015, Frontiers in neurology,
N S Shcherbak, and I O Suchkova, and E L Patkin, and I A Voznyuk
January 2022, Frontiers in molecular neuroscience,
Copied contents to your clipboard!