"4 S" polycyclic aromatic hydrocarbon binding protein: further characterization and kinetic properties. 1987

M T Masucci, and A Petrillo, and V Sica

A protein that binds polycyclic aromatic hydrocarbons (PAHs) with high affinity and sediments in a sucrose gradient at 4 S has been described in rat liver cytosol. This "4 S" PAH binding protein precipitates at a 40-60% ammonium sulfate saturation. This partial purification procedure allows assay of this protein by using purified 3H-benzo(a)pyrene (3H-BaP) as radioactive ligand and dextran-coated charcoal as adsorbent for unreacted 3H-BaP. The 3H-BaP binding activity measured as a function of pH shows its maximum activity between pH 7.3 and 10.5. The "4 S" PAH binding protein is stable up to 42 degrees C even in the absence of the ligand. At 65 degrees C the binding sites for 3H-BaP are destroyed. The binding activity assayed as a function of protein concentration is linear between 0.4 and 2 mg/ml at 0 degrees C, whereas at 37 degrees C higher protein concentrations (4 mg/ml) can be reached. Exposure to guanidine X HCl (3 M) and urea (5 M) for 20 min at 4 degrees C inhibits the PAH binding completely to the "4 S" protein. Quick dilution or dialysis does not restore the binding activity. The dissociation rate of the "4 S" PAH binding protein measured in the presence of an excess of unlabeled ligand at 0 degrees C is biphasic and shows a two-step, first-order kinetic pattern. At 37 degrees C the dissociation rate is linear and faster, and is complete after 5 min of incubation. The association rate shows the same behavior: the binding is complete after 10 min at 0 degrees C, whereas at 37 degrees C the reaction is 10 times as fast. The dissociation equilibrium constants at 0 degrees C and 37 degrees C are respectively 2.45 X 10(-9) M and 1.09 X 10(-9) M. The high rates of association and dissociation of BaP to "4 S" PAH binding protein were used to set up an assay to exchange radioactive 3H-BaP with cold BaP.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D011083 Polycyclic Compounds Compounds which contain two or more rings in their structure. Compounds, Polycyclic
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D005260 Female Females
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M T Masucci, and A Petrillo, and V Sica
November 1986, Archives of biochemistry and biophysics,
M T Masucci, and A Petrillo, and V Sica
November 1992, Archives of biochemistry and biophysics,
M T Masucci, and A Petrillo, and V Sica
February 1994, The Journal of biological chemistry,
M T Masucci, and A Petrillo, and V Sica
November 1987, Archives of biochemistry and biophysics,
M T Masucci, and A Petrillo, and V Sica
February 1990, Journal of medicinal chemistry,
M T Masucci, and A Petrillo, and V Sica
August 1997, Biochemical and biophysical research communications,
M T Masucci, and A Petrillo, and V Sica
February 1991, Toxicology,
M T Masucci, and A Petrillo, and V Sica
October 1990, Carcinogenesis,
Copied contents to your clipboard!