Protective Effect of Anwulignan on Gastric Injury Induced by Indomethacin in Mice. 2022

Jiawei Liu, and Jiahui Fang, and Junxiong Zhang, and Dan Wang, and Zhihong Zhang, and Chunmei Wang, and Jinghui Sun, and Jianguang Chen, and He Li, and Shu Jing
College of Pharmacy (J.W.L., J.H.F., J.X.Z., Z.H.Z., C.W., J.S., J.C., H.L.) and College of Medicine (D.W.), Beihua University, Affiliated Hospital of Beihua University (S.J.), Jilin, China.

Anwulignan (AN) is a monomer lignan from Schisandra sphenanthera Rehd. et Wits (Schisandra sphenanthera fructus, Schisandra sphenanthera). The protective effect of AN against the indomethacin (IND)-induced gastric injury to mice and the related mechanism of action was investigated in this study. The effect of AN was mainly assessed by observing the gastric tissue morphology, gastric ulcer index (GUI), ulcer inhibition rate (UIR), gastric juice volume (GJV) and pH value. Chemical colorimetry, immunofluorescence, ELISA, and Western blot were used to detect related factors in the gastric tissue. The results showed that AN reduced the GUI, increased the UIR, inhibited the GJV, and increased the gastric pH value. AN significantly increased cyclooxygenase-1, cyclooxygenase-2, and prostaglandin E2 expression levels in the gastric tissue, activated nuclear factor (erythroid-derived 2)-like 2 (Nrf2), increased heme oxygenase-1 expression, enhanced the activity of superoxide dismutase and glutathione peroxidase, and decreased the malondialdehyde content. AN reduced the phosphorylation of nuclear factor-κ gene binding (NF-κB) p65 and its nuclear translocation, the key protein of NF-κB signaling pathway in the gastric tissue, and the content of the pathway downstream signaling molecules, including interleukin-6, interleukin-1β, and tumor necrosis factor-α, to play an anti-inflammatory role. AN inhibited the downstream signals B-cell lymphoma 2-associated x protein and cleaved caspase-3 in gastric tissue, and activated B-cell lymphoma 2, to play an antiapoptotic role, which were further verified by Hoechst staining. Therefore, AN has a significant protection against the gastric injury induced by IND in mice, and the mechanism may be concerned in its activation of Nrf2, inhibition of NF-κB signaling pathway, and anti-apoptotic effect. SIGNIFICANCE STATEMENT: Anwulignan (AN) significantly reduced the indomethacin-induced gastric injury in mice, and its antioxidation, anti-inflammation, and antiapoptosis were considered to be involve in the effect, suggesting that AN should be a potential drug or food supplement for gastric injury induced by indomethacin.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D005979 Glutathione Peroxidase An enzyme catalyzing the oxidation of 2 moles of GLUTATHIONE in the presence of HYDROGEN PEROXIDE to yield oxidized glutathione and water. Cytosolic Glutathione Peroxidase,Glutathione Lipoperoxidase,Selenoglutathione Peroxidase,Glutathione Peroxidase, Cytosolic,Lipoperoxidase, Glutathione,Peroxidase, Glutathione,Peroxidase, Selenoglutathione
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000893 Anti-Inflammatory Agents Substances that reduce or suppress INFLAMMATION. Anti-Inflammatory Agent,Antiinflammatory Agent,Agents, Anti-Inflammatory,Agents, Antiinflammatory,Anti-Inflammatories,Antiinflammatories,Antiinflammatory Agents,Agent, Anti-Inflammatory,Agent, Antiinflammatory,Agents, Anti Inflammatory,Anti Inflammatories,Anti Inflammatory Agent,Anti Inflammatory Agents
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015232 Dinoprostone The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa. PGE2,PGE2alpha,Prostaglandin E2,Prostaglandin E2alpha,PGE2 alpha,Prepidil Gel,Prostaglandin E2 alpha,Prostenon,E2 alpha, Prostaglandin,E2, Prostaglandin,E2alpha, Prostaglandin,Gel, Prepidil,alpha, PGE2,alpha, Prostaglandin E2
D015850 Interleukin-6 A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS. Hepatocyte-Stimulating Factor,Hybridoma Growth Factor,IL-6,MGI-2,Myeloid Differentiation-Inducing Protein,Plasmacytoma Growth Factor,B Cell Stimulatory Factor-2,B-Cell Differentiation Factor,B-Cell Differentiation Factor-2,B-Cell Stimulatory Factor 2,B-Cell Stimulatory Factor-2,BSF-2,Differentiation Factor, B-Cell,Differentiation Factor-2, B-Cell,IFN-beta 2,IL6,Interferon beta-2,B Cell Differentiation Factor,B Cell Differentiation Factor 2,B Cell Stimulatory Factor 2,Differentiation Factor 2, B Cell,Differentiation Factor, B Cell,Differentiation-Inducing Protein, Myeloid,Growth Factor, Hybridoma,Growth Factor, Plasmacytoma,Hepatocyte Stimulating Factor,Interferon beta 2,Interleukin 6,Myeloid Differentiation Inducing Protein,beta-2, Interferon
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB

Related Publications

Jiawei Liu, and Jiahui Fang, and Junxiong Zhang, and Dan Wang, and Zhihong Zhang, and Chunmei Wang, and Jinghui Sun, and Jianguang Chen, and He Li, and Shu Jing
January 2023, The Journal of pharmacology and experimental therapeutics,
Jiawei Liu, and Jiahui Fang, and Junxiong Zhang, and Dan Wang, and Zhihong Zhang, and Chunmei Wang, and Jinghui Sun, and Jianguang Chen, and He Li, and Shu Jing
January 1996, Advances in experimental medicine and biology,
Jiawei Liu, and Jiahui Fang, and Junxiong Zhang, and Dan Wang, and Zhihong Zhang, and Chunmei Wang, and Jinghui Sun, and Jianguang Chen, and He Li, and Shu Jing
March 1999, Journal of pineal research,
Jiawei Liu, and Jiahui Fang, and Junxiong Zhang, and Dan Wang, and Zhihong Zhang, and Chunmei Wang, and Jinghui Sun, and Jianguang Chen, and He Li, and Shu Jing
January 2021, Evidence-based complementary and alternative medicine : eCAM,
Jiawei Liu, and Jiahui Fang, and Junxiong Zhang, and Dan Wang, and Zhihong Zhang, and Chunmei Wang, and Jinghui Sun, and Jianguang Chen, and He Li, and Shu Jing
July 2009, Bulletin of experimental biology and medicine,
Jiawei Liu, and Jiahui Fang, and Junxiong Zhang, and Dan Wang, and Zhihong Zhang, and Chunmei Wang, and Jinghui Sun, and Jianguang Chen, and He Li, and Shu Jing
June 1999, European journal of pharmacology,
Jiawei Liu, and Jiahui Fang, and Junxiong Zhang, and Dan Wang, and Zhihong Zhang, and Chunmei Wang, and Jinghui Sun, and Jianguang Chen, and He Li, and Shu Jing
January 2013, Journal of natural medicines,
Jiawei Liu, and Jiahui Fang, and Junxiong Zhang, and Dan Wang, and Zhihong Zhang, and Chunmei Wang, and Jinghui Sun, and Jianguang Chen, and He Li, and Shu Jing
October 2020, The Eurasian journal of medicine,
Jiawei Liu, and Jiahui Fang, and Junxiong Zhang, and Dan Wang, and Zhihong Zhang, and Chunmei Wang, and Jinghui Sun, and Jianguang Chen, and He Li, and Shu Jing
January 2018, Clinical interventions in aging,
Jiawei Liu, and Jiahui Fang, and Junxiong Zhang, and Dan Wang, and Zhihong Zhang, and Chunmei Wang, and Jinghui Sun, and Jianguang Chen, and He Li, and Shu Jing
January 2023, ACS omega,
Copied contents to your clipboard!