Microscopical and electrophysiological studies on the healing-over of striated fibers of cremaster muscle of the guinea pig. 1987

O M Echeverría, and J G Ninomiya, and G H Vázquez-Nin

In previous works it has been shown that the striated fibers of the cremaster muscle undergo a calcium-dependent healing-over reaction after transection and that the fibers of the diaphragm under the same conditions do not recover. In the present work striated fibers of the cremaster and diaphragm are studied, using electrophysiological techniques, light and electron microscopy, 15, 30, 45 and 60 min after transection in an attempt to clarify the process leading to the recovery of the fibers of the cremaster muscle. The recording of membrane potentials at different times after the lesion in the immediate vicinity of the cut end demonstrates that the new diffusion barrier is formed at the damaged surface. Light microscopy of fibers of cremaster transected in vitro indicates the existence of a rapid process preventing the outflow of particulate constituents of the cytoplasm 1 min after the lesion. Electron microscopy shows that this hindrance is due to a compact disposition of filaments derived from altered myofibrils near the cut end. This filamentary plug does not exist in the diaphragm. Cell membrane closing is a slow phenomenon which is completed between 30 and 60 min after the lesion in different fibers. No reconstitution of the cell membrane was found in the fibers of the diaphragm. Rapid and slow responses are interpreted as particular cases of the surface precipitation reaction known in several cell types for more than 40 years.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014945 Wound Healing Restoration of integrity to traumatized tissue. Healing, Wound,Healings, Wound,Wound Healings

Related Publications

O M Echeverría, and J G Ninomiya, and G H Vázquez-Nin
January 1982, The Japanese journal of physiology,
O M Echeverría, and J G Ninomiya, and G H Vázquez-Nin
January 1970, The Journal of general physiology,
O M Echeverría, and J G Ninomiya, and G H Vázquez-Nin
November 1987, Journal of cardiovascular pharmacology,
O M Echeverría, and J G Ninomiya, and G H Vázquez-Nin
April 1976, The Journal of pharmacy and pharmacology,
O M Echeverría, and J G Ninomiya, and G H Vázquez-Nin
June 1993, Cardiovascular drugs and therapy,
O M Echeverría, and J G Ninomiya, and G H Vázquez-Nin
October 1969, Japanese circulation journal,
O M Echeverría, and J G Ninomiya, and G H Vázquez-Nin
December 1975, British journal of pharmacology,
O M Echeverría, and J G Ninomiya, and G H Vázquez-Nin
January 1974, Cell and tissue research,
O M Echeverría, and J G Ninomiya, and G H Vázquez-Nin
August 1971, The American journal of physiology,
O M Echeverría, and J G Ninomiya, and G H Vázquez-Nin
October 1976, British journal of pharmacology,
Copied contents to your clipboard!