Effect of magnesium depletion on metabolism of 25-hydroxyvitamin D in rats. 1987

T O Carpenter, and D L Carnes, and C S Anast

Resistance to vitamin D in magnesium depletion has been observed in humans and in animal studies. Variable levels of 1,25-dihydroxyvitamin D [1,25(OH)2D] have been reported in patients with magnesium depletion, and studies of vitamin D metabolism in states of magnesium depletion have not yielded consistent results. We examined effects of magnesium deprivation on circulating 1,25(OH)2D levels before and after a loading dose of 25-hydroxyvitamin D3 [25(OH)D3], on in vivo conversion of small doses of radiolabeled 25(OH)D3 to 1,25(OH)2D3 in intact rats, and on in vitro 25-hydroxyvitamin D-1 alpha-hydroxylase (1 alpha-hydroxylase) activity in rat renal mitochondria. The effects of magnesium-free media on mitochondrial 1 alpha-hydroxylase activity was examined. Magnesium depletion did not affect in vivo conversion of 25(OH)D to 1,25(OH)2D. In vitro 1 alpha-hydroxylase activity was comparable in magnesium-replete and -deplete animals and was evident in the absence of added magnesium in incubation media. Our in vivo and in vitro studies are consistent with one another and demonstrate that in the rat conversion of 25(OH)D to 1,25(OH)2D is unimpaired in magnesium deficiency. Resistance to vitamin D in magnesium depletion is likely due to the impaired skeletal responsivity to 1,25(OH)2D, as demonstrated in earlier studies.

UI MeSH Term Description Entries
D008275 Magnesium Deficiency A nutritional condition produced by a deficiency of magnesium in the diet, characterized by anorexia, nausea, vomiting, lethargy, and weakness. Symptoms are paresthesias, muscle cramps, irritability, decreased attention span, and mental confusion, possibly requiring months to appear. Deficiency of body magnesium can exist even when serum values are normal. In addition, magnesium deficiency may be organ-selective, since certain tissues become deficient before others. (Harrison's Principles of Internal Medicine, 12th ed, p1936) Deficiency, Magnesium,Deficiencies, Magnesium,Magnesium Deficiencies
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002112 Calcifediol The major circulating metabolite of VITAMIN D3. It is produced in the LIVER and is the best indicator of the body's vitamin D stores. It is effective in the treatment of RICKETS and OSTEOMALACIA, both in azotemic and non-azotemic patients. Calcifediol also has mineralizing properties. 25-Hydroxycholecalciferol,25-Hydroxyvitamin D 3,25-Hydroxycholecalciferol Monohydrate,25-Hydroxyvitamin D3,Calcidiol,Calcifediol Anhydrous,Calcifediol, (3 alpha,5Z,7E)-Isomer,Calcifediol, (3 beta,5E,7E)-Isomer,Calderol,Dedrogyl,Hidroferol,25 Hydroxycholecalciferol,25 Hydroxycholecalciferol Monohydrate,25 Hydroxyvitamin D 3,25 Hydroxyvitamin D3,Anhydrous, Calcifediol,Monohydrate, 25-Hydroxycholecalciferol
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015090 25-Hydroxyvitamin D3 1-alpha-Hydroxylase A mitochondrial cytochrome P450 enzyme that catalyzes the 1-alpha-hydroxylation of 25-hydroxyvitamin D3 (also known as 25-hydroxycholecalciferol) in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP27B1 gene, converts 25-hydroxyvitamin D3 to 1-alpha,25-dihydroxyvitamin D3 which is the active form of VITAMIN D in regulating bone growth and calcium metabolism. This enzyme is also active on plant 25-hydroxyvitamin D2 (ergocalciferol). 25-Hydroxycholecalciferol 1-Hydroxylase,CYP27B1,Calcidiol 1-Monooxygenase,Cytochrome P-450 CYP27B1,25-Hydroxycholecalciferol-1-Hydroxylase,25-Hydroxyergocalciferol 1-alpha-Hydroxylase,25-Hydroxyvitamin D 1-alpha-Hydroxylase,25-Hydroxyvitamin D(3) 1 alpha-Hydroxylase,25-Hydroxyvitamin D2 1-hydroxylase,1-alpha-Hydroxylase, 25-Hydroxyergocalciferol,1-alpha-Hydroxylase, 25-Hydroxyvitamin D,1-hydroxylase, 25-Hydroxyvitamin D2,25 Hydroxycholecalciferol 1 Hydroxylase,25 Hydroxyergocalciferol 1 alpha Hydroxylase,25 Hydroxyvitamin D 1 alpha Hydroxylase,25 Hydroxyvitamin D2 1 hydroxylase,25 Hydroxyvitamin D3 1 alpha Hydroxylase,Calcidiol 1 Monooxygenase,Cytochrome P 450 CYP27B1
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

T O Carpenter, and D L Carnes, and C S Anast
September 1986, Calcified tissue international,
T O Carpenter, and D L Carnes, and C S Anast
July 1990, The Journal of laboratory and clinical medicine,
T O Carpenter, and D L Carnes, and C S Anast
January 2012, Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists,
T O Carpenter, and D L Carnes, and C S Anast
August 1988, Biochemistry international,
T O Carpenter, and D L Carnes, and C S Anast
August 1987, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
T O Carpenter, and D L Carnes, and C S Anast
December 2018, Journal of musculoskeletal & neuronal interactions,
T O Carpenter, and D L Carnes, and C S Anast
August 1979, The Journal of clinical investigation,
T O Carpenter, and D L Carnes, and C S Anast
July 1978, The Tohoku journal of experimental medicine,
T O Carpenter, and D L Carnes, and C S Anast
January 1989, European journal of applied physiology and occupational physiology,
T O Carpenter, and D L Carnes, and C S Anast
April 1980, Pediatric research,
Copied contents to your clipboard!