Significance of right ventricular filling for left ventricular enddiastolic pressure-volume relationship under acute hypoxia in the dog. 1987

C Brilla, and G Kissling, and R Jacob

In 14 closed-chest dogs, the significance of right ventricular filling for left ventricular enddiastolic pressure-volume relationship was investigated under acute hypoxia by means of single plane cineventriculography and simultaneous intraventricular pressure recording. Both after 5 min asphyxia (respirator switched off) (n = 5) and after 3 min hypoxia (ventilation with pure N2) (n = 9), there was a significant leftward shift (p less than 0.005) of the left ventricular enddiastolic pressure-volume curve as compared to the control curves under normoxia. To simulate the elevated filling of the right ventricle under acute hypoxia, rapid intraventricular infusion was applied under normoxic conditions to raise right ventricular enddiastolic pressure to the same values as that measured under hypoxia. The extent of the ensuing leftward shift of the left ventricular enddiastolic pressure-volume curve was on average 60% of the shift under hypoxia in both sets of experiments. Neither the slope of the relationship between volume stiffness and enddiastolic pressure, nor the relationship between tangent elastic modulus and left ventricular wall stress, was affected by hypoxia or asphyxia. Thus, the shift of the left ventricular enddiastolic pressure-volume curve in the early stage of hypoxia is predominantly due to the influence of increased right ventricular filling. Since the increased volume of the atria under acute hypoxia limits left ventricular distensibility additionally, the changes in left ventricular enddiastolic pressure-volume relationships observed in the early stage of hypoxia are mainly, or even entirely, the result of interaction of the various heart compartments, and not a reflection of alterations in myocardial tissue elasticity.

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002306 Cardiac Volume The volume of the HEART, usually relating to the volume of BLOOD contained within it at various periods of the cardiac cycle. The amount of blood ejected from a ventricle at each beat is STROKE VOLUME. Heart Volume,Cardiac Volumes,Heart Volumes,Volume, Cardiac,Volume, Heart,Volumes, Cardiac,Volumes, Heart
D003971 Diastole Post-systolic relaxation of the HEART, especially the HEART VENTRICLES. Diastoles
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005069 Evaluation Studies as Topic Works about studies that determine the effectiveness or value of processes, personnel, and equipment, or the material on conducting such studies. Critique,Evaluation Indexes,Evaluation Methodology,Evaluation Report,Evaluation Research,Methodology, Evaluation,Pre-Post Tests,Qualitative Evaluation,Quantitative Evaluation,Theoretical Effectiveness,Use-Effectiveness,Critiques,Effectiveness, Theoretical,Evaluation Methodologies,Evaluation Reports,Evaluation, Qualitative,Evaluation, Quantitative,Evaluations, Qualitative,Evaluations, Quantitative,Indexes, Evaluation,Methodologies, Evaluation,Pre Post Tests,Pre-Post Test,Qualitative Evaluations,Quantitative Evaluations,Report, Evaluation,Reports, Evaluation,Research, Evaluation,Test, Pre-Post,Tests, Pre-Post,Use Effectiveness
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies

Related Publications

C Brilla, and G Kissling, and R Jacob
November 1969, Japanese heart journal,
C Brilla, and G Kissling, and R Jacob
February 1969, Circulation research,
C Brilla, and G Kissling, and R Jacob
April 1974, Circulation research,
C Brilla, and G Kissling, and R Jacob
October 2014, European journal of heart failure,
C Brilla, and G Kissling, and R Jacob
September 1987, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!