Mechanism of renaturation of a large protein, aspartokinase-homoserine dehydrogenase. 1987

H Vaucheret, and L Signon, and G Le Bras, and J R Garel

The renaturation of aspartokinase-homoserine dehydrogenase and of some of its smaller fragments has been investigated after complete unfolding by 6 M guanidine hydrochloride. Fluorescence measurements show that a major folding reaction occurs rapidly (in less than a few seconds) after the protein has been transferred to native conditions and results in the shielding of the tryptophan residues from the aqueous solvent; this step also takes place in the fragments and probably corresponds to the independent folding of different segments along the polypeptide chain. The reappearance of the kinase activity, which is an index of the formation of "native" structure within a single chain, is much slower (a few minutes) and has the following properties: it is involved in a kinetic competition with the formation of aggregates; it has an activation energy of 22 +/- 5 kcal/mol; it is not related to a slow reaction in unfolding and thus probably not controlled by the cis-trans isomerization of X-Pro peptide bonds; its rate is inversely proportional to the solvent viscosity. It seems as if this reaction is limited by the mutual arrangement of the regions that have folded rapidly and independently. It is proposed that the mechanism where a fast folding of domains is followed by a slow pairing of folded domains could be generalized to other long chains composed of several domains; such a slow pairing of folded domains would correspond to a rate-limiting process specific to the renaturation of large proteins. The reappearance of the dehydrogenase activity measures the formation of a dimeric species. The dimerization can occur only after each chain has reached its "native" conformation.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
D001225 Aspartokinase Homoserine Dehydrogenase A bifunctional protein consisting of aspartokinase, and homoserine dehydrogenase activities. It is found primarily in BACTERIA and in PLANTS. Aspartokinase I Homoserine Dehydrogenase I,Aspartokinase II Homoserine Dehydrogenase II,Bifunctional Aspartokinase-Homoserine Dehydrogenase,Bifunctional Aspartokinase-Homoserine Dehydrogenase 1,Bifunctional Aspartokinase-Homoserine Dehydrogenase 2,Aspartokinase-Homoserine Dehydrogenase, Bifunctional,Bifunctional Aspartokinase Homoserine Dehydrogenase,Bifunctional Aspartokinase Homoserine Dehydrogenase 1,Bifunctional Aspartokinase Homoserine Dehydrogenase 2,Dehydrogenase, Aspartokinase Homoserine,Dehydrogenase, Bifunctional Aspartokinase-Homoserine,Homoserine Dehydrogenase, Aspartokinase
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D019791 Guanidine A strong organic base existing primarily as guanidium ions at physiological pH. It is found in the urine as a normal product of protein metabolism. It is also used in laboratory research as a protein denaturant. (From Martindale, the Extra Pharmacopoeia, 30th ed and Merck Index, 12th ed) It is also used in the treatment of myasthenia and as a fluorescent probe in HPLC. Guanidine Hydrochloride,Guanidinium,Guanidinium Chloride,Guanidine Monohydrate,Guanidine Monohydrobromide,Guanidine Monohydrochloride,Guanidine Monohydroiodine,Guanidine Nitrate,Guanidine Phosphate,Guanidine Sulfate,Guanidine Sulfate (1:1),Guanidine Sulfate (2:1),Guanidine Sulfite (1:1),Guanidium Chloride,Chloride, Guanidinium,Chloride, Guanidium,Hydrochloride, Guanidine,Monohydrate, Guanidine,Monohydrobromide, Guanidine,Monohydrochloride, Guanidine,Monohydroiodine, Guanidine,Nitrate, Guanidine,Phosphate, Guanidine,Sulfate, Guanidine

Related Publications

H Vaucheret, and L Signon, and G Le Bras, and J R Garel
February 1972, Biochemical and biophysical research communications,
H Vaucheret, and L Signon, and G Le Bras, and J R Garel
March 1981, Biochemistry,
H Vaucheret, and L Signon, and G Le Bras, and J R Garel
December 1991, Plant physiology,
H Vaucheret, and L Signon, and G Le Bras, and J R Garel
February 1984, Biochemistry,
H Vaucheret, and L Signon, and G Le Bras, and J R Garel
September 1974, FEBS letters,
H Vaucheret, and L Signon, and G Le Bras, and J R Garel
October 1975, Biochemistry,
H Vaucheret, and L Signon, and G Le Bras, and J R Garel
January 1968, Biochemical and biophysical research communications,
H Vaucheret, and L Signon, and G Le Bras, and J R Garel
January 1975, Antonie van Leeuwenhoek,
H Vaucheret, and L Signon, and G Le Bras, and J R Garel
February 1985, FEBS letters,
Copied contents to your clipboard!