Deoxycytidine preferentially protects normal versus leukemic myeloid progenitor cells from cytosine arabinoside-mediated cytotoxicity. 1987

K Bhalla, and W MacLaughlin, and J Cole, and Z Arlin, and M Baker, and G Graham, and S Grant

We examined the ability of high concentrations of the naturally occurring nucleoside deoxycytidine (dCyd) to reverse the cytotoxicity of high (eg, greater than or equal to 10(-5) mol/L) concentrations of 1-B-D arabinofuranosylcytosine (Ara-C) toward normal (CFU-GM) and leukemic myeloid progenitor cells (L-CFU). Leukemic myeloblasts from patients with acute nonlymphocytic leukemia (ANLL) and normal human bone marrow mononuclear cells were cultured in soft agar in the continuous presence of 10(-5) to 5 X 10(-5) mol/L of Ara-C together with dCyd (10(-4) to 5 X 10(-3) mol/L). Administration of 10(-5) mol/L of Ara-C alone eradicated colony formation in all samples tested. Coadministration of 10(-3) mol/L of dCyd restored 72.2% of control colony formation for CFU-GM, but only 10.9% for L-CFU. When higher concentrations of Ara-C (eg, 5 X 10(-5) mol/L) were administered, dCyd-mediated protection toward CFU-GM decreased, but remained significantly greater than that observed for L-CFU. Incubation with 10(-3) mol/L of dCyd reduced the 4-hour intracellular accumulation of the triphosphate derivative of Ara-C (Ara-CTP) in both normal and leukemic cells by greater than 98%; under identical conditions, a significant expansion of the intracellular of the triphosphate derivative of dCyd (dCTP) pools was observed in normal bone marrow mononuclear cells but not in leukemic blasts. This finding was associated with a greater reduction in Ara-C DNA incorporation in normal elements. These in vitro studies suggest that dCyd may preferentially protect normal v leukemic myeloid progenitor cells from the lethal actions of high-dose Ara-C.

UI MeSH Term Description Entries
D007938 Leukemia A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006) Leucocythaemia,Leucocythemia,Leucocythaemias,Leucocythemias,Leukemias
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D003561 Cytarabine A pyrimidine nucleoside analog that is used mainly in the treatment of leukemia, especially acute non-lymphoblastic leukemia. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. Its actions are specific for the S phase of the cell cycle. It also has antiviral and immunosuppressant properties. (From Martindale, The Extra Pharmacopoeia, 30th ed, p472) Ara-C,Arabinofuranosylcytosine,Arabinosylcytosine,Cytosine Arabinoside,Aracytidine,Aracytine,Cytarabine Hydrochloride,Cytonal,Cytosar,Cytosar-U,beta-Ara C,Ara C,Arabinoside, Cytosine,Cytosar U,beta Ara C
D003841 Deoxycytidine A nucleoside component of DNA composed of CYTOSINE and DEOXYRIBOSE. Cytosine Deoxyribonucleoside,Cytosine Deoxyriboside,Deoxyribonucleoside, Cytosine,Deoxyriboside, Cytosine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell

Related Publications

K Bhalla, and W MacLaughlin, and J Cole, and Z Arlin, and M Baker, and G Graham, and S Grant
January 1986, Leukemia research,
K Bhalla, and W MacLaughlin, and J Cole, and Z Arlin, and M Baker, and G Graham, and S Grant
May 1991, Experimental hematology,
K Bhalla, and W MacLaughlin, and J Cole, and Z Arlin, and M Baker, and G Graham, and S Grant
January 1982, Experimental pathology,
K Bhalla, and W MacLaughlin, and J Cole, and Z Arlin, and M Baker, and G Graham, and S Grant
August 1990, Experimental hematology,
K Bhalla, and W MacLaughlin, and J Cole, and Z Arlin, and M Baker, and G Graham, and S Grant
May 1998, Leukemia research,
K Bhalla, and W MacLaughlin, and J Cole, and Z Arlin, and M Baker, and G Graham, and S Grant
August 1996, European journal of haematology,
K Bhalla, and W MacLaughlin, and J Cole, and Z Arlin, and M Baker, and G Graham, and S Grant
October 2009, Blood,
K Bhalla, and W MacLaughlin, and J Cole, and Z Arlin, and M Baker, and G Graham, and S Grant
August 1992, International journal of hematology,
K Bhalla, and W MacLaughlin, and J Cole, and Z Arlin, and M Baker, and G Graham, and S Grant
January 2003, Stem cells (Dayton, Ohio),
K Bhalla, and W MacLaughlin, and J Cole, and Z Arlin, and M Baker, and G Graham, and S Grant
January 1990, Leukemia research,
Copied contents to your clipboard!