Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinants of cytotoxicity and morphological transformation. 1987

F Bertolero, and G Pozzi, and E Sabbioni, and U Saffiotti

Cytotoxicity, morphological neoplastic transformation, cellular uptake and metabolic reduction were determined in BALB/3T3 Cl A31-1-1 cells for trivalent arsenic (sodium arsenite, As3+) and for pentavalent arsenic (sodium arsenate, As5+). The levels of cellular uptake of 73As-labelled sodium arsenite and arsenate were dose-dependent and highest in the first hour. At equimolar concentration (3 X 10(-6) M), cellular uptake was 4-fold higher for As3+ than for As5+. Cytotoxicity was higher for As3+ than for As5+, but when correlated to total As cell burden it showed no significant difference for the two forms. Morphological transformation focus assays showed transforming activity for both As3+ and As5+, with relative transformation frequencies also of approximately 4:1. Recovery from the cytosol after exposure for 1-24 h was greater than 90% for either form of absorbed As. Exposure to As3+ yielded 100% as As3+ in cytosol, but exposure to As5+ yielded greater than 70% as As3+, showing a high rate of intracellular metabolic reduction. No methylated metabolites were detected by ion-exchange chromatography. After 24-h incubation in cell-free medium, oxidation of As3+ to As5+ occurred up to 30% of the dose, but incubation in the presence of cells lowered the oxidation level to 4%. As5+ was recovered unchanged from cell-free medium (24-h incubation), but in the presence of the cells it yielded up to 5% as As3+ within 24 h and the cumulative release of As3+ by cells exposed to As5+ was dose-dependent. Glutathione depletion by diethylmaleate inhibited reduction of As5+ to As3+ by these cells up to 25% of controls, showing that As5+ reduction is partly dependent on glutathione. These results suggest that As3+ is the form responsible for the cytotoxic and transforming effects, independently of the valence state of the inorganic arsenic in the culture medium.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001149 Arsenates Inorganic or organic salts and esters of arsenic acid.
D001151 Arsenic A shiny gray element with atomic symbol As, atomic number 33, and atomic weight 75. It occurs throughout the universe, mostly in the form of metallic arsenides. Most forms are toxic. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), arsenic and certain arsenic compounds have been listed as known carcinogens. (From Merck Index, 11th ed) Arsenic-75,Arsenic 75
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
D017670 Sodium Compounds Inorganic compounds that contain sodium as an integral part of the molecule. Compounds, Sodium

Related Publications

F Bertolero, and G Pozzi, and E Sabbioni, and U Saffiotti
February 2012, Environmental science & technology,
F Bertolero, and G Pozzi, and E Sabbioni, and U Saffiotti
January 1985, Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement,
F Bertolero, and G Pozzi, and E Sabbioni, and U Saffiotti
November 2016, Journal of environmental sciences (China),
F Bertolero, and G Pozzi, and E Sabbioni, and U Saffiotti
June 2017, The Science of the total environment,
F Bertolero, and G Pozzi, and E Sabbioni, and U Saffiotti
January 2009, Bioresource technology,
F Bertolero, and G Pozzi, and E Sabbioni, and U Saffiotti
December 1981, Scandinavian journal of work, environment & health,
F Bertolero, and G Pozzi, and E Sabbioni, and U Saffiotti
June 2003, Archives of toxicology,
F Bertolero, and G Pozzi, and E Sabbioni, and U Saffiotti
August 1981, Environmental research,
F Bertolero, and G Pozzi, and E Sabbioni, and U Saffiotti
January 1981, Mutation research,
F Bertolero, and G Pozzi, and E Sabbioni, and U Saffiotti
April 1980, Environmental research,
Copied contents to your clipboard!