Ancestral State Reconstruction Using BayesTraits. 2022

Andrew Meade, and Mark Pagel
School of Biological Sciences, University of Reading, Reading, UK. a.meade@reading.ac.uk.

The fossil record is the best evidence of the characteristics of extinct species, but only a narrow range of traits fossilize or survive the fossilization process. Lacking fossil or other evidence about the past, ancestral states can be reconstructed. Three pieces of information are combined when reconstructing ancestral states: extant or known trait values (data); the evolutionary history, linking the species of interest (phylogeny); and the evolutionary model of trait change. These reconstructed ancestral states can be interpreted as our best guess as to the route evolution took, given the distribution of the trait across species, the relationships among them, and our model of evolution. Because the information we use to reconstruct the past is often not known without error, uncertainty about their true values should be accounted for when reconstructing ancestral states. In this chapter we describe how ancestral states can be reconstructed using a Bayesian framework implemented in the software BayesTraits to account for uncertainty in the phylogenetic tree and the model of evolution.

UI MeSH Term Description Entries
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D005580 Fossils Remains, impressions, or traces of animals or plants of past geological times which have been preserved in the earth's crust. Fossil
D001499 Bayes Theorem A theorem in probability theory named for Thomas Bayes (1702-1761). In epidemiology, it is used to obtain the probability of disease in a group of people with some characteristic on the basis of the overall rate of that disease and of the likelihood of that characteristic in healthy and diseased individuals. The most familiar application is in clinical decision analysis where it is used for estimating the probability of a particular diagnosis given the appearance of some symptoms or test result. Bayesian Analysis,Bayesian Estimation,Bayesian Forecast,Bayesian Method,Bayesian Prediction,Analysis, Bayesian,Bayesian Approach,Approach, Bayesian,Approachs, Bayesian,Bayesian Approachs,Estimation, Bayesian,Forecast, Bayesian,Method, Bayesian,Prediction, Bayesian,Theorem, Bayes
D012984 Software Sequential operating programs and data which instruct the functioning of a digital computer. Computer Programs,Computer Software,Open Source Software,Software Engineering,Software Tools,Computer Applications Software,Computer Programs and Programming,Computer Software Applications,Application, Computer Software,Applications Software, Computer,Applications Softwares, Computer,Applications, Computer Software,Computer Applications Softwares,Computer Program,Computer Software Application,Engineering, Software,Open Source Softwares,Program, Computer,Programs, Computer,Software Application, Computer,Software Applications, Computer,Software Tool,Software, Computer,Software, Computer Applications,Software, Open Source,Softwares, Computer Applications,Softwares, Open Source,Source Software, Open,Source Softwares, Open,Tool, Software,Tools, Software

Related Publications

Andrew Meade, and Mark Pagel
February 2009, BMC bioinformatics,
Andrew Meade, and Mark Pagel
April 2019, Theoretical population biology,
Andrew Meade, and Mark Pagel
May 2012, Systematic biology,
Andrew Meade, and Mark Pagel
March 2013, Mathematical biosciences,
Andrew Meade, and Mark Pagel
October 2017, Bulletin of mathematical biology,
Andrew Meade, and Mark Pagel
May 2020, Scientific reports,
Andrew Meade, and Mark Pagel
November 2020, Microbial genomics,
Andrew Meade, and Mark Pagel
August 2009, Journal of evolutionary biology,
Andrew Meade, and Mark Pagel
July 2016, PLoS computational biology,
Andrew Meade, and Mark Pagel
February 2021, Current protocols,
Copied contents to your clipboard!