Comparison of axial banding patterns in fibrils of type V collagen and type I collagen. 1987

E Adachi, and T Hayashi

Type V collagen and type I collagen were obtained from human placenta, essentially by salt fractionation. Precipitates were formed from mixed solutions of type V collagen and type I collagen in various ratios. They were incubated at 37 degrees C for 1 hour and negatively stained with 0.5% uranyl acetate (pH 4.4) at 37 degrees C. The specimens, seen by electron microscopy, were fibrils with a D-periodic banding pattern. Axial electron density profiles of collagen fibrils were obtained from selected electron micrographs by densitometric tracing. The slit width corresponded to 1.5 nm. The relative electron densities of overlap region vs. hole region were lower than 20% in fine fibrils containing a significant amount of type V collagen. It is suggested that the overlap region of such collagen fibrils may be loosely packed, being accessible to uranyl acetate, or the hole region may be filled by larger non-collagenous portions of type V collagen, resulting in loss of the light and dark alternation. Six to 8 white transverse lines were discerned per period and labeled consecutively with Arabic numerals. White lines 2 and 5 tended to merge with lines 1 and 4, respectively, in collagen fibrils formed from a solution containing a significant amount of type I collagen or pure type I collagen. The eight white lines corresponded to c2, c1, b2, b1, a4, a1, e1 and d with reference to their locations in the D-period. The locations of white lines in collagen fibrils which contain significant amount of type V collagen were identical with those in type I collagen fibrils. This is consistent with the primary structure that the axial distribution of charged amino acids in type V collagen is quite similar to that in type I collagen.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

E Adachi, and T Hayashi
November 2013, Biochemical and biophysical research communications,
E Adachi, and T Hayashi
January 1987, Journal of molecular biology,
E Adachi, and T Hayashi
February 1982, Cell,
E Adachi, and T Hayashi
January 2009, Physical review letters,
E Adachi, and T Hayashi
January 2001, Biofizika,
E Adachi, and T Hayashi
June 2015, ACS nano,
E Adachi, and T Hayashi
January 1990, Journal of structural biology,
E Adachi, and T Hayashi
October 2015, Oncotarget,
Copied contents to your clipboard!