SEC61G Promotes Cervical Cancer Proliferation by Activating MAPK Signaling Pathway. 2022

Yangyang Fan, and Ying Wang, and Feifei Liu, and Haili Wang, and Qiumin Li
Department of Obstetrics and Gynecology, Shaanxi Province People's Hospital, Xi'an, 710068 Shaanxi, China.

The abnormal expression of SEC61G plays an important role in the development of various tumors. This study explored the effects of SEC61G on MAPK signaling pathway and proliferation of cervical cancer (CC) cells. shRNA was used to inhibit the expression of SEC61G and EdU to observe its effect on the proliferation of CC cell SiHa. The effect of SEC61G on invasion was evaluated by Transwell assay. TCGA database was used to analyze the influence of high or low SEC61G expression level on the overall survival of CC patients. Western blot was used to detect the expressions of SEC61G, p-RAF1, Raf1, p-MEK1/2, MEK1/2, and p-ERK1/2 in cells. SiHa cells overexpressing SEC61G (SiHa-SEC61G) and control group (SiHa-mock) were subcutaneously implanted in nude mice. The tumor growth curve was measured at the specified time points between SiHa-SEC61G and SiHa-mock. The inhibitory effect of gefitinib on SEC61G was further evaluated. In patients with CC, high SEC61G expression predicted poor prognosis. Silencing SEC61G inhibited proliferation and invasion of CC cells in vitro. Overexpression of SEC61G can promote the proliferation and invasion of CC cells in vitro. Meanwhile, overexpression of SEC61G promoted the proliferation of CC xenografts. Knocking down SEC61G can inhibit MAPK signaling pathway. Gefitinib can inhibit CC proliferation and tumor growth by SEC61G. SEC61G is highly expressed in CC and has poor prognosis. Inhibition of SEC61G expression can effectively inhibit the growth and proliferation of human CC cells. The mechanism may be related to the inhibition of MAPK signaling pathway.

UI MeSH Term Description Entries
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D002583 Uterine Cervical Neoplasms Tumors or cancer of the UTERINE CERVIX. Cancer of Cervix,Cancer of the Cervix,Cancer of the Uterine Cervix,Cervical Cancer,Cervical Neoplasms,Cervix Cancer,Cervix Neoplasms,Neoplasms, Cervical,Neoplasms, Cervix,Uterine Cervical Cancer,Cancer, Cervical,Cancer, Cervix,Cancer, Uterine Cervical,Cervical Cancer, Uterine,Cervical Cancers,Cervical Neoplasm,Cervical Neoplasm, Uterine,Cervix Neoplasm,Neoplasm, Cervix,Neoplasm, Uterine Cervical,Uterine Cervical Cancers,Uterine Cervical Neoplasm
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000069816 SEC Translocation Channels Universally conserved multiprotein complexes that form the protein transport channel of the general secretory (SEC) pathway. The SEC translocase is present in all bacteria, archaea, and eukaryotes. It is in the ENDOPLASMIC RETICULUM membrane of eukaryotic cells, in the THYLAKOID MEMBRANE in CHLOROPLASTS and in some protozoa in the INNER MITOCHONDRIAL MEMBRANE. SEC Translocation Channel,SEC Translocon,SEC61 Translocation Channel,Sec Protein Translocation System,SecYEG Protein,SecYEG Translocation Channel,SEC Complexes,SEC Translocase,SEC Translocons,SEC61 Protein,SEC61 Proteins,SEC61 Translocase,SEC61 Translocation Channels,SEC61 Translocon,Sec Protein Translocation Systems,Sec61 Complex,Sec61 Protein Translocation System,SecY Translocase,SecYEG Complex,SecYEG Complexes,SecYEG Protein Translocation System,SecYEG Proteins,SecYEG Translocation Channels,SecYEG Translocon,Channel, SEC Translocation,Channel, SEC61 Translocation,Channel, SecYEG Translocation,Channels, SEC Translocation,Channels, SEC61 Translocation,Channels, SecYEG Translocation,Complex, Sec61,Complex, SecYEG,Complexes, SEC,Complexes, SecYEG,Protein, SEC61,Protein, SecYEG,Proteins, SEC61,Proteins, SecYEG,Translocase, SEC,Translocase, SEC61,Translocase, SecY,Translocation Channel, SEC,Translocation Channel, SEC61,Translocation Channel, SecYEG,Translocation Channels, SEC,Translocation Channels, SEC61,Translocation Channels, SecYEG,Translocon, SEC,Translocon, SEC61,Translocon, SecYEG,Translocons, SEC
D000077156 Gefitinib A selective tyrosine kinase inhibitor for the EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) that is used for the treatment of locally advanced or metastatic NON-SMALL CELL LUNG CANCER. Iressa,N-(3-Chloro-4-fluorophenyl)-7-methoxy-6-(3-(4-morpholinyl)propoxy)-4-quinazolinamide,ZD 1839,ZD1839
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular

Related Publications

Yangyang Fan, and Ying Wang, and Feifei Liu, and Haili Wang, and Qiumin Li
January 2019, Cancer management and research,
Yangyang Fan, and Ying Wang, and Feifei Liu, and Haili Wang, and Qiumin Li
January 2017, Oncotarget,
Yangyang Fan, and Ying Wang, and Feifei Liu, and Haili Wang, and Qiumin Li
February 2017, Oncotarget,
Yangyang Fan, and Ying Wang, and Feifei Liu, and Haili Wang, and Qiumin Li
August 2023, Molecular omics,
Yangyang Fan, and Ying Wang, and Feifei Liu, and Haili Wang, and Qiumin Li
January 2019, Cancer cell international,
Yangyang Fan, and Ying Wang, and Feifei Liu, and Haili Wang, and Qiumin Li
January 2018, Cancer cell international,
Yangyang Fan, and Ying Wang, and Feifei Liu, and Haili Wang, and Qiumin Li
May 2019, Oncology reports,
Yangyang Fan, and Ying Wang, and Feifei Liu, and Haili Wang, and Qiumin Li
January 2019, Cancer management and research,
Yangyang Fan, and Ying Wang, and Feifei Liu, and Haili Wang, and Qiumin Li
June 2023, Oncology reports,
Yangyang Fan, and Ying Wang, and Feifei Liu, and Haili Wang, and Qiumin Li
June 2020, European review for medical and pharmacological sciences,
Copied contents to your clipboard!