Real-time imaging of Arc/Arg3.1 transcription ex vivo reveals input-specific immediate early gene dynamics. 2022

Pablo J Lituma, and Robert H Singer, and Sulagna Das, and Pablo E Castillo
Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461.

The ability of neurons to process and store salient environmental features underlies information processing in the brain. Long-term information storage requires synaptic plasticity and regulation of gene expression. While distinct patterns of activity have been linked to synaptic plasticity, their impact on immediate early gene (IEG) expression remains poorly understood. The activity regulated cytoskeleton associated (Arc) gene has received wide attention as an IEG critical for long-term synaptic plasticity and memory. Yet, to date, the transcriptional dynamics of Arc in response to compartment and input-specific activity is unclear. By developing a knock-in mouse to fluorescently tag Arc alleles, we studied real-time transcription dynamics after stimulation of dentate granule cells (GCs) in acute hippocampal slices. To our surprise, we found that Arc transcription displayed distinct temporal kinetics depending on the activation of excitatory inputs that convey functionally distinct information, i.e., medial and lateral perforant paths (MPP and LPP, respectively). Moreover, the transcriptional dynamics of Arc after synaptic stimulation was similar to direct activation of GCs, although the contribution of ionotropic glutamate receptors, L-type voltage-gated calcium channel, and the endoplasmic reticulum (ER) differed. Specifically, we observed an ER-mediated synapse-to-nucleus signal that supported elevations in nuclear calcium and, thereby, rapid induction of Arc transcription following MPP stimulation. By delving into the complex excitation-transcription coupling for Arc, our findings highlight how different synaptic inputs may encode information by modulating transcription dynamics of an IEG linked to learning and memory.

UI MeSH Term Description Entries
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D017781 Genes, Immediate-Early Genes that show rapid and transient expression in the absence of de novo protein synthesis. The term was originally used exclusively for viral genes where immediate-early referred to transcription immediately following virus integration into the host cell. It is also used to describe cellular genes which are expressed immediately after resting cells are stimulated by extracellular signals such as growth factors and neurotransmitters. Immediate Early Gene,Immediate-Early Gene,Immediate-Early Genes,Early Gene, Immediate,Early Genes, Immediate,Gene, Immediate Early,Gene, Immediate-Early,Genes, Immediate Early,Immediate Early Genes
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Pablo J Lituma, and Robert H Singer, and Sulagna Das, and Pablo E Castillo
November 2008, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Pablo J Lituma, and Robert H Singer, and Sulagna Das, and Pablo E Castillo
November 2006, Neuron,
Pablo J Lituma, and Robert H Singer, and Sulagna Das, and Pablo E Castillo
February 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Pablo J Lituma, and Robert H Singer, and Sulagna Das, and Pablo E Castillo
January 2009, PloS one,
Pablo J Lituma, and Robert H Singer, and Sulagna Das, and Pablo E Castillo
January 2015, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Pablo J Lituma, and Robert H Singer, and Sulagna Das, and Pablo E Castillo
October 2017, Biophysical journal,
Pablo J Lituma, and Robert H Singer, and Sulagna Das, and Pablo E Castillo
February 2014, Proceedings of the National Academy of Sciences of the United States of America,
Pablo J Lituma, and Robert H Singer, and Sulagna Das, and Pablo E Castillo
July 2006, Nature neuroscience,
Pablo J Lituma, and Robert H Singer, and Sulagna Das, and Pablo E Castillo
February 2010, Learning & memory (Cold Spring Harbor, N.Y.),
Copied contents to your clipboard!