Disposition of preformed mineral in matrix vesicles. Internal localization and association with alkaline phosphatase. 1987

F M McLean, and P J Keller, and B R Genge, and S A Walters, and R E Wuthier

Studies were made on the disposition of mineral ions in matrix vesicles (MV) and their relationship to alkaline phosphatase by treatment of MV-enriched microsomes (MVEM) with graded levels of Ca2+-chelating agents to complex accessible ions, fractionation of MVEM on hypertonic sucrose gradients at two different pH values (7.5 and 8.0) to evaluate for the presence of calcium phosphate mineral, and passage of MVEM through cation-exchange columns to determine the accessibility of the Ca2+. The effect of removal of Ca2+ and Pi on subsequent ability of MVEM to induce mineral formation from synthetic cartilage lymph was also determined. Passage through cation-exchange columns revealed that MV Ca2+ was not freely exchangeable, but coeluted in the void volume with alkaline phosphatase. However, upon incubation in synthetic cartilage lymph, progressively more Ca2+ was retained by the column. These findings indicate that, initially, the majority of Ca2+ in MVEM is internal and not readily exchangeable, but as Ca2+ accumulates, progressively more becomes external. The mineral in MV is labile and readily susceptible to loss; treatment with graded levels of EGTA removed major portions of the original Ca2+ and Pi. 45Ca uptake by these mineral-depleted MV was markedly reduced, even in the presence of alkaline phosphatase substrates. Sucrose gradient fractionation of MVEM caused extensive loss of Pi, but not Ca2+, from the low-density alkaline phosphatase-rich fractions. This reveals that Ca2+ and Pi are not initially coupled together: Pi is largely soluble, whereas Ca2+ must be tightly bound. In the high-density vesicles, large amounts of both Ca2+ and Pi are present. The slightly enhanced recovery at higher pH suggests the presence of a solid mineral phase. During mineralization by MV, Ca2+ became externalized, and concomitantly alkaline phosphatase activity declined. This suggests that a direct association exists between the enzyme and the developing mineral.

UI MeSH Term Description Entries
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008903 Minerals Native, inorganic or fossilized organic substances having a definite chemical composition and formed by inorganic reactions. They may occur as individual crystals or may be disseminated in some other mineral or rock. (Grant & Hackh's Chemical Dictionary, 5th ed; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Mineral
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D001857 Bone Matrix Extracellular substance of bone tissue consisting of COLLAGEN fibers, ground substance, and inorganic crystalline minerals and salts. Bone Matrices,Matrices, Bone,Matrix, Bone
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002132 Calcium Radioisotopes Unstable isotopes of calcium that decay or disintegrate emitting radiation. Ca atoms with atomic weights 39, 41, 45, 47, 49, and 50 are radioactive calcium isotopes. Radioisotopes, Calcium
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken

Related Publications

F M McLean, and P J Keller, and B R Genge, and S A Walters, and R E Wuthier
December 1983, Biochimica et biophysica acta,
F M McLean, and P J Keller, and B R Genge, and S A Walters, and R E Wuthier
August 1975, The Bulletin of Tokyo Dental College,
F M McLean, and P J Keller, and B R Genge, and S A Walters, and R E Wuthier
May 2006, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
F M McLean, and P J Keller, and B R Genge, and S A Walters, and R E Wuthier
May 1975, Biochimica et biophysica acta,
F M McLean, and P J Keller, and B R Genge, and S A Walters, and R E Wuthier
December 1992, Bone and mineral,
F M McLean, and P J Keller, and B R Genge, and S A Walters, and R E Wuthier
April 1973, Journal of anatomy,
F M McLean, and P J Keller, and B R Genge, and S A Walters, and R E Wuthier
January 1987, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
F M McLean, and P J Keller, and B R Genge, and S A Walters, and R E Wuthier
January 2021, Pakistan journal of medical sciences,
Copied contents to your clipboard!