Chemical modification of the calmodulin-stimulated phosphatase, calcineurin, by phenylglyoxal. 1987

M M King, and L P Heiny

Chemical modification of calcineurin by phenylglyoxal was used to probe for the presence of arginine at, or in close proximity to, the catalytic site of this phosphatase. Phenylglyoxal inactivated calcineurin with a second-order rate constant of 1.5 M-1 min-1 at pH 7.5 and 30 degrees C. The inactivation reaction was extremely sensitive to Ca2+-induced conformational changes on calcineurin; removal of this metal ion from the reaction medium increased the rate of inactivation by almost 1 order of magnitude. Furthermore, significant protection of calcineurin by ADP was observed only in the presence of Ca2+, which suggests either that distinct sites are modified by phenylglyoxal in the absence and presence of Ca2+ or that the metal ion promotes binding of ADP to calcineurin. Inactivation of calcineurin by phenyl[2-14C]glyoxal resulted in the incorporation of more than 12 eq of the reagent. However, a kinetic analysis of the order of the inactivation reaction and complete protection of calcineurin by p-nitrophenyl phosphate suggest that only one of the modified residues is responsible for the loss of enzymatic activity. Protection of calcineurin by ADP was enhanced severalfold by calmodulin, which correlated well with a calmodulin-stimulated decrease in the Ki for this ligand. Protection of calcineurin from inactivation by phenylglyoxal was also observed in the presence of various other nucleotides; half-maximal protection by these poor substrates and competitive inhibitors was observed at concentrations near their respective inhibition constants. Thus, the results of this modification study indicate that at least 1 arginine residue is essential for the expression of catalytic activity of the calmodulin-regulated phosphatase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009596 Nitrophenols PHENOLS carrying nitro group substituents. Nitrophenol
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D010658 Phenylglyoxal A reagent that is highly selective for the modification of arginyl residues. It is used to selectively inhibit various enzymes and acts as an energy transfer inhibitor in photophosphorylation.
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002148 Calmodulin-Binding Proteins Proteins which bind calmodulin. They are found in many tissues and have a variety of functions including F-actin cross-linking properties, inhibition of cyclic nucleotide phosphodiesterase and calcium and magnesium ATPases. Caldesmon,Calspectin,CaM-BP(80),Caldesmon (77),Calmodulin Binding Proteins,Proteins, Calmodulin-Binding
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus

Related Publications

M M King, and L P Heiny
March 1986, The Journal of biological chemistry,
M M King, and L P Heiny
May 1998, The Journal of biological chemistry,
M M King, and L P Heiny
September 1983, Biochimica et biophysica acta,
M M King, and L P Heiny
January 1990, Advances in second messenger and phosphoprotein research,
M M King, and L P Heiny
January 1995, Journal of enzyme inhibition,
M M King, and L P Heiny
April 1988, The Journal of biological chemistry,
M M King, and L P Heiny
September 1985, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!