Effects of cerebroprotective agents on cerebral blood flow and on postischemic energy metabolism in the rat brain. 1987

G W Bielenberg, and T Beck, and D Sauer, and M Burniol, and J Krieglstein

Male Wistar rats were subjected to forebrain ischemia of 10 min duration by clamping both common carotid arteries and simultaneously lowering systemic blood pressure to 40 mm Hg by exsanguination. Recovery was achieved by removing the arterial clamps and reinfusing the blood. Cortical levels of high-energy phosphates and glycolytic substrates were determined enzymatically. Naftidrofuryl (10 or 20 mg/kg i.p.) or ketamine (5 mg/kg i.v.) were applied 30 min prior to the induction of ischemia. S(-)-Emopamil (4 mg/kg) or nimodipine (50 micrograms/kg) were administered by intravenous infusion over 30 min. Nimodipine and emopamil increased the blood glucose level and lowered preischemic blood pressure. Under control conditions, a tendency toward a higher cortical glucose level was observed in treated brains. Brain energy stores were exhausted after ischemia in control and treated animals to the same degree. Lactate levels, however, were higher in emopamil-treated animals. This effect was attributed to the elevated preischemic glucose levels. During the early recovery period, the restoration of high-energy phosphates was accelerated by both calcium entry blockers. Nimodipine and emopamil increased the levels of glucose and glucose-6-phosphate in the early postischemic period. Naftidrofuryl (10 mg/kg) increased the level of creatine-phosphate and ATP after 2 min of recovery. Naftidrofuryl (20 mg/kg) exerted no effect on cerebral energy metabolism, but considerably reduced postischemic blood pressure (possibly thereby masking its ameliorative action). Ketamine accelerated the postischemic restoration of high-energy phosphates. In the conscious rat, local cerebral blood flow (LCBF) was determined with the 14C-iodoantipyrine technique following emopamil (20 mg/kg s.c.) or naftidrofuryl (10 mg/kg i.v.) application.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007649 Ketamine A cyclohexanone derivative used for induction of anesthesia. Its mechanism of action is not well understood, but ketamine can block NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE) and may interact with sigma receptors. 2-(2-Chlorophenyl)-2-(methylamino)cyclohexanone,CI-581,Calipsol,Calypsol,Kalipsol,Ketalar,Ketamine Hydrochloride,Ketanest,Ketaset,CI 581,CI581
D008297 Male Males
D009257 Nafronyl A drug used in the management of peripheral and cerebral vascular disorders. It is claimed to enhance cellular oxidative capacity and to be a spasmolytic. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1310) It may also be an antagonist at 5HT-2 serotonin receptors. Nafronyloxalate,Naftidrofuryl,Artocoron,Azunaftil,Di-Actane,Dusodril,Gévatran,LS-121,Nafronyl Oxalate,Nafti Von Ct,Nafti-Puren,Nafti-Ratiopharm,Naftifurin Oxalate,Naftilong,Naftilux,Praxilene,Praxilène,Di Actane,LS 121,LS121,Nafti Puren,Nafti Ratiopharm,NaftiRatiopharm,Oxalate, Nafronyl,Oxalate, Naftifurin
D009553 Nimodipine A calcium channel blockader with preferential cerebrovascular activity. It has marked cerebrovascular dilating effects and lowers blood pressure. Admon,Bay e 9736,Brainal,Calnit,Kenesil,Modus,Nimodipin Hexal,Nimodipin-ISIS,Nimodipino Bayvit,Nimotop,Nymalize,Remontal,Bayvit, Nimodipino,Hexal, Nimodipin,Nimodipin ISIS,e 9736, Bay
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy

Related Publications

G W Bielenberg, and T Beck, and D Sauer, and M Burniol, and J Krieglstein
January 1989, Biomedica biochimica acta,
G W Bielenberg, and T Beck, and D Sauer, and M Burniol, and J Krieglstein
April 1988, NMR in biomedicine,
G W Bielenberg, and T Beck, and D Sauer, and M Burniol, and J Krieglstein
January 1977, Acta neurologica Scandinavica. Supplementum,
G W Bielenberg, and T Beck, and D Sauer, and M Burniol, and J Krieglstein
September 1985, Neurologia medico-chirurgica,
G W Bielenberg, and T Beck, and D Sauer, and M Burniol, and J Krieglstein
September 1985, Neurologia medico-chirurgica,
G W Bielenberg, and T Beck, and D Sauer, and M Burniol, and J Krieglstein
July 1978, Brain research,
G W Bielenberg, and T Beck, and D Sauer, and M Burniol, and J Krieglstein
January 1979, Stroke,
G W Bielenberg, and T Beck, and D Sauer, and M Burniol, and J Krieglstein
December 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
G W Bielenberg, and T Beck, and D Sauer, and M Burniol, and J Krieglstein
August 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
G W Bielenberg, and T Beck, and D Sauer, and M Burniol, and J Krieglstein
January 1973, Transactions of the American Neurological Association,
Copied contents to your clipboard!