A programmable system to methylate and demethylate N6-methyladenosine (m6A) on specific RNA transcripts in mammalian cells. 2022

Chen Chang, and Gang Ma, and Edwin Cheung, and Andrew P Hutchins
Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China; Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, China.

RNA N6-methyladenosine (m6A) is the most abundant internal mRNA modification and forms part of an epitranscriptomic system that modulates RNA function. m6A is reversibly catalyzed by specific enzymes, and those modifications can be recognized by RNA-binding proteins that in turn regulate biological processes. Although there are many reports demonstrating m6A participation in critical biological functions, this exploration has mainly been conducted through the global KO or knockdown of the writers, erasers, or readers of m6A. Consequently, there is a lack of information about the role of m6A on single transcripts in biological processes, posing a challenge in understanding the biological functions of m6A. Here, we demonstrate a CRISPR/dCas13a-based RNA m6A editors, which can target RNAs using a single or multiple CRISPR RNA array to methylate or demethylate m6A in human 293T cells and mouse embryonic stem cells. We systematically assay its capabilities to enable the targeted rewriting of m6A dynamics, including modulation of circular RNA translation and transcript half-life. Finally, we use the system to specifically modulate m6A levels on the noncoding XIST (X-inactive specific transcript) to modulate X chromosome silencing and activation. The editors described here can be used to explore the roles of m6A in biological processes.

UI MeSH Term Description Entries
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000066450 Mouse Embryonic Stem Cells PLURIPOTENT STEM CELLS derived from the BLASTOCYST INNER CELL MASS of day 3.5 mouse embryos. mESC,Cells, Mouse Embryonic Stem,Mouse Embryonic Stem Cell,Stem Cells, Mouse Embryonic,mESCs
D000079962 RNA, Circular RNA molecules in which the 3' and 5' ends are covalently joined to form a closed continuous loop. They are resistant to digestion by EXORIBONUCLEASES. Circular Intronic RNA,Circular RNA,Circular RNAs,Closed Circular RNA,ciRNA,circRNA,circRNAs,Circular RNA, Closed,Intronic RNA, Circular,RNA, Circular Intronic,RNA, Closed Circular,RNAs, Circular
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D016601 RNA-Binding Proteins Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA. Double-Stranded RNA-Binding Protein,Double-Stranded RNA-Binding Proteins,ds RNA-Binding Protein,RNA-Binding Protein,ds RNA-Binding Proteins,Double Stranded RNA Binding Protein,Double Stranded RNA Binding Proteins,Protein, Double-Stranded RNA-Binding,Protein, ds RNA-Binding,RNA Binding Protein,RNA Binding Proteins,RNA-Binding Protein, Double-Stranded,RNA-Binding Protein, ds,RNA-Binding Proteins, Double-Stranded,ds RNA Binding Protein
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D057809 HEK293 Cells A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5. 293T Cells,HEK 293 Cell Line,HEK 293 Cells,Human Embryonic Kidney Cell Line 293,Human Kidney Cell Line 293,293 Cell, HEK,293 Cells, HEK,293T Cell,Cell, 293T,Cell, HEK 293,Cell, HEK293,Cells, 293T,Cells, HEK 293,Cells, HEK293,HEK 293 Cell,HEK293 Cell

Related Publications

Chen Chang, and Gang Ma, and Edwin Cheung, and Andrew P Hutchins
September 2020, Stem cells (Dayton, Ohio),
Chen Chang, and Gang Ma, and Edwin Cheung, and Andrew P Hutchins
November 2020, Cell proliferation,
Chen Chang, and Gang Ma, and Edwin Cheung, and Andrew P Hutchins
March 2022, Cancer biology & medicine,
Chen Chang, and Gang Ma, and Edwin Cheung, and Andrew P Hutchins
July 2020, Journal of Zhejiang University. Science. B,
Chen Chang, and Gang Ma, and Edwin Cheung, and Andrew P Hutchins
July 2018, Nature neuroscience,
Chen Chang, and Gang Ma, and Edwin Cheung, and Andrew P Hutchins
September 2019, Nature chemical biology,
Chen Chang, and Gang Ma, and Edwin Cheung, and Andrew P Hutchins
March 2019, Medical oncology (Northwood, London, England),
Chen Chang, and Gang Ma, and Edwin Cheung, and Andrew P Hutchins
February 2024, Plant biotechnology journal,
Chen Chang, and Gang Ma, and Edwin Cheung, and Andrew P Hutchins
November 2023, Reproductive sciences (Thousand Oaks, Calif.),
Chen Chang, and Gang Ma, and Edwin Cheung, and Andrew P Hutchins
June 2021, Journal of translational medicine,
Copied contents to your clipboard!