Culture of differentiated and undifferentiated type II cells from fetal rat lung. 1987

M J Kresch, and D W Dynia, and I Gross

We have developed a relatively simple and reproducible method for the isolation and culture of both differentiated and undifferentiated type II cells from fetal rat lung. The technique involves an initial period of explant culture in serum and hormone free medium, followed by enzymatic dissociation of the explants, differential adhesion to remove fibroblasts, incubation of the cell pellet to promote aggregation of the type II cells and monolayer culture of the type II cells. The type II cells form clusters which are surrounded by scattered fibroblasts. When the technique was performed with three differential adhesion steps, cultures contained 86.0 +/- 1.4% type II cells. To obtain a higher degree of purity and greater yield, two differential adhesions followed by gentle trypsinization of the cultures which selectively removes the isolated fibroblasts was performed. This resulted in cultures with 89.4 +/- 1.7% type II cells. The differentiated fetal type II cell cultures were prepared from 19-day fetal rat lungs which were initially maintained in explant culture for 48 h. These differentiated cells demonstrated the characteristic morphologic features of type II cells including lamellar bodies and microvilli. Undifferentiated fetal cells were prepared in a similar manner from 18-day fetal rat lung maintained in explant culture for 24 h. These cells did not contain intracellular osmiophilic granules; the appearance of these granules could, however, be induced by hormones. For this reason they are considered to be pre-type II cells. The viability of the cultured cells was 97%. Both the differentiated and undifferentiated fetal type II cells specifically bound the Maclura pomifera lectin, a type II cell surface marker. The phospholipid profile of the fetal cells was similar to that of adult rat type II cells; the differentiated fetal cells, however, synthesized less phosphatidylcholine than the adult cells did, but more than the undifferentiated fetal cells. The differentiated fetal cells secreted phosphatidylcholine at a basal rate of 0.6% +/- 0.1% during a 90-min incubation. There was dose-dependent stimulation of phosphatidylcholine secretion after exposure to terbutaline. Maximum stimulation (76%) was observed at a concentration of 10 microM. This culture system provides a valuable model for studies of the maturation of the undifferentiated fetal type II cell and surfactant metabolism and secretion in the differentiated fetal type II cell.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010715 Phosphatidylglycerols A nitrogen-free class of lipids present in animal and particularly plant tissues and composed of one mole of glycerol and 1 or 2 moles of phosphatidic acid. Members of this group differ from one another in the nature of the fatty acids released on hydrolysis. Glycerol Phosphoglycerides,Monophosphatidylglycerols,Phosphatidylglycerol,Phosphatidyl Glycerol,Glycerol, Phosphatidyl,Phosphoglycerides, Glycerol
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid

Related Publications

M J Kresch, and D W Dynia, and I Gross
September 1986, Biochimica et biophysica acta,
M J Kresch, and D W Dynia, and I Gross
June 1988, Biochimica et biophysica acta,
M J Kresch, and D W Dynia, and I Gross
April 1989, Biochimica et biophysica acta,
M J Kresch, and D W Dynia, and I Gross
March 1988, The American review of respiratory disease,
M J Kresch, and D W Dynia, and I Gross
January 1987, Lung,
M J Kresch, and D W Dynia, and I Gross
March 1999, American journal of respiratory cell and molecular biology,
M J Kresch, and D W Dynia, and I Gross
March 2001, American journal of respiratory cell and molecular biology,
Copied contents to your clipboard!