Role of fatty acyl coenzyme A oxidase in the efflux of oxidized glutathione from perfused livers of rats treated with the peroxisome proliferator nafenopin. 1987

J G Conway, and D A Neptun, and L K Garvey, and J A Popp

The diffusion of H2O2 into the cytoplasm from peroxisomes during high rates of peroxisomal beta oxidation of fatty acids was studied in perfused livers from rats treated with the hepatocarcinogenic peroxisome proliferator, nafenopin. Efflux of oxidized glutathione (GSSG) into the bile was used as a measure of increased H2O2 supply for cytoplasmic glutathione peroxidase. Male F-344 rats were given methylcellulose vehicle or nafenopin (80 mg/kg/day) by gavage for 5-8 days and livers perfused in situ with Krebs-Henseleit buffer containing 50 microM taurocholate and 0.75 g/100 ml albumin. In livers from fed, vehicle-treated or fed, nafenopin-treated rats basal rates of GSSG efflux were about 60 nmol/g/h. Subsequent infusion of 350 microM lauric acid, an excellent substrate for peroxisomal beta-oxidation, had no effect on GSSG efflux. To maximize fatty acid oxidation rats were fasted 16-20 h. In livers from fasted, nafenopin-treated rats the basal rate of GSSG efflux was 384 +/- 85 (SE) nmol/g/h (n = 8). Subsequent infusion of lauric acid increased the rate to 940 +/- 138 nmol/g/h. In livers from fasted, vehicle-treated rats lauric acid caused GSSG efflux to increase slightly from 104 +/- 14 to 286 +/- 37 nmol/g/h (n = 9). Efflux of reduced glutathione in bile was similar in livers from fasted, vehicle-treated (163 +/- 15 nmol/g/h) and fasted, nafenopin-treated rats (135 +/- 17 nmol/g/h) and decreased about 30% with lauric acid infusion. N-Octanoyl and oleoyl coenzyme A were excellent substrates for cyanide-insensitive NAD+ reduction in liver homogenates from fasted, nafenopin-treated rats whereas n-butyl, linoleoyl, and arachidonyl coenzyme A were poor substrates. Infusion of octanoate and oleate caused large increases in GSSG efflux from perfused livers from fasted, nafenopin-treated rats. In contrast, butyrate, linoleate, and arachidonate had no effect on GSSG efflux from livers from fasted, nafenopin-treated rats. Octanoate, oleate, linoleate, butyrate, and arachidonate had no effect on GSSG efflux from livers from fasted, vehicle-treated rats. Infusion of 2-bromooctanoate (600 microM) completely blocked lauric acid-induced increases in GSSG efflux and acetoacetate and beta-hydroxybutyrate production in livers from fasted, nafenopin-treated rats. Infusion of 1-3-bis(2-chloroethyl)-1-nitrosourea reduced glutathione reductase activity by 90% but did not alter lauric acid-induced increases in GSSG efflux or ketogenesis in livers from fasted, nafenopin-treated rats.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007850 Lauric Acids 12-Carbon saturated monocarboxylic acids. Dodecanoic Acids,Acids, Dodecanoic,Acids, Lauric
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D009255 Nafenopin A peroxisome proliferator that is used experimentally to promote liver tumors. It has been used as an antihyperlipoproteinemic agent. CH-13437,Melipan,Nafenoic Acid,SU-13,437,Acid, Nafenoic,CH 13437,CH13437,SU 13,437,SU13,437
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011422 Propionates Derivatives of propionic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxyethane structure. Propanoate,Propanoic Acid,Propionate,Propanoates,Propanoic Acid Derivatives,Propanoic Acids,Propionic Acid Derivatives,Propionic Acids,Acid, Propanoic,Acids, Propanoic,Acids, Propionic,Derivatives, Propanoic Acid,Derivatives, Propionic Acid
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer

Related Publications

J G Conway, and D A Neptun, and L K Garvey, and J A Popp
January 1996, The Journal of biological chemistry,
J G Conway, and D A Neptun, and L K Garvey, and J A Popp
April 1976, Cancer research,
J G Conway, and D A Neptun, and L K Garvey, and J A Popp
December 1977, Journal of the National Cancer Institute,
J G Conway, and D A Neptun, and L K Garvey, and J A Popp
February 1989, Toxicology letters,
J G Conway, and D A Neptun, and L K Garvey, and J A Popp
December 1995, Xenobiotica; the fate of foreign compounds in biological systems,
J G Conway, and D A Neptun, and L K Garvey, and J A Popp
January 1999, Electrophoresis,
J G Conway, and D A Neptun, and L K Garvey, and J A Popp
September 1979, The Biochemical journal,
J G Conway, and D A Neptun, and L K Garvey, and J A Popp
January 1994, Archives of biochemistry and biophysics,
Copied contents to your clipboard!