The Core Complex of the Ca2+-Triggered Presynaptic Fusion Machinery. 2023

Axel T Brunger, and Jeremy Leitz
Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States; Department of Structural Biology, Stanford University, Stanford, United States; Department of Photon Science, Stanford University, Stanford, United States; Howard Hughes Medical Institute, Stanford University, Stanford, United States. Electronic address: brunger@stanford.edu.

Synaptic neurotransmitter release is mediated by an orchestra of presynaptic proteins that precisely control and trigger fusion between synaptic vesicles and the neuron terminal at the active zone upon the arrival of an action potential. Critical to this process are the neuronal SNAREs (Soluble N-ethylmaleimide sensitive factor Attachment protein REceptor), the Ca2+-sensor synaptotagmin, the activator/regulator complexin, and other factors. Here, we review the interactions between the SNARE complex and synaptotagmin, with focus on the so-called primary interface between synaptotagmin and the SNARE complex that has been validated in terms of its physiological relevance. We discuss several other but less validated interfaces as well, including the so-called tripartite interface, and we discuss the pros and cons for these possible alternative interfaces. We also present new molecular dynamics simulations of the tripartite interface and new data of an inhibitor of the primary interface in a reconstituted system of synaptic vesicle fusion.

UI MeSH Term Description Entries
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic
D050600 SNARE Proteins A superfamily of small proteins which are involved in the MEMBRANE FUSION events, intracellular protein trafficking and secretory processes. They share a homologous SNARE motif. The SNARE proteins are divided into subfamilies: QA-SNARES; QB-SNARES; QC-SNARES; and R-SNARES. The formation of a SNARE complex (composed of one each of the four different types SNARE domains (Qa, Qb, Qc, and R)) mediates MEMBRANE FUSION. Following membrane fusion SNARE complexes are dissociated by the NSFs (N-ETHYLMALEIMIDE-SENSITIVE FACTORS), in conjunction with SOLUBLE NSF ATTACHMENT PROTEIN, i.e., SNAPs (no relation to SNAP 25.) SNAP Receptor,SNARE Protein,NSF Attachment Protein Receptor,Receptor, SNAP,SNAP Receptors,SNARE,SNAREs,Soluble N-ethylmaleimide-Sensitive-Factor Attachment Protein Receptor,Target Membrane SNARE Proteins,Target SNARE Proteins,Vesicle SNARE Proteins,Vesicular SNARE Proteins,t-SNARE,tSNAREs,v-SNARE,v-SNAREs,Protein, SNARE,SNARE Proteins, Target,SNARE Proteins, Vesicle,SNARE Proteins, Vesicular,Soluble N ethylmaleimide Sensitive Factor Attachment Protein Receptor,v SNAREs
D050857 Synaptotagmins A family of vesicular transport proteins characterized by an N-terminal transmembrane region and two C-terminal calcium-binding domains. Synaptotagmin,Synaptotagmin 11,Synaptotagmin 12,Synaptotagmin 13,Synaptotagmin 14,Synaptotagmin 15,Synaptotagmin 3,Synaptotagmin 4,Synaptotagmin 5,Synaptotagmin 6,Synaptotagmin 7,Synaptotagmin 8,Synaptotagmin 9,Synaptotagmin III,Synaptotagmin IV,Synaptotagmin IX,Synaptotagmin V,Synaptotagmin VI,Synaptotagmin VII,Synaptotagmin VIII,Synaptotagmin XI,Synaptotagmin XII,Synaptotagmin XIII,Synaptotagmin XIV,Synaptotagmin XV,SytIV Protein,SytVII Protein,SytXIII Protein,Tagmin

Related Publications

Axel T Brunger, and Jeremy Leitz
February 2010, Biological psychiatry,
Axel T Brunger, and Jeremy Leitz
April 1999, Cell,
Axel T Brunger, and Jeremy Leitz
July 2008, Nature structural & molecular biology,
Axel T Brunger, and Jeremy Leitz
January 2006, Annual review of biophysics and biomolecular structure,
Axel T Brunger, and Jeremy Leitz
May 2005, Nature,
Axel T Brunger, and Jeremy Leitz
November 2019, Neuroscience,
Axel T Brunger, and Jeremy Leitz
July 2003, The Journal of biological chemistry,
Axel T Brunger, and Jeremy Leitz
October 2005, Journal of cell science,
Axel T Brunger, and Jeremy Leitz
August 2007, The European journal of neuroscience,
Copied contents to your clipboard!