Effect of altered membrane structure on NK cell-mediated cytotoxicity. III. Decreased susceptibility to natural killer cytotoxic factor (NKCF) and suppression of NKCF release by membrane rigidification. 1987

R C Roozemond, and M Mevissen, and D C Urli, and B Bonavida

We have shown recently that alteration of the membrane fluidity of either effector or target cells results in significant and selective inhibition of NK cell-mediated cytotoxicity (NK CMC). However, the localization of the defective stage in the NK lytic pathway is not known. In the present study, we show that rigidification of the NK-sensitive U937 target cell membrane by lipid modulation reduces its sensitivity to lysis by NK cytotoxic factor (NKCF). This resistance was not due to loss of NKCF binding sites on the target cell because target cells with rigid membranes absorbed more NKCF than control cells. The enhanced ability to absorb NKCF by membrane modification was supported by data showing that NK-resistant Raji cells lacking NKCF-binding sites absorb NKCF after lipid modification. Furthermore, consistent with the lipophilic nature of NKCF, synthetic lipid vesicles absorb NKCF. In contrast to membrane rigidification, membrane fluidization of the target cell did not change the target cell properties. Rigidification of the NK effector cell membrane abrogates it ability to secrete active NKCF when stimulated by target cells or by mitogens. Membrane fluidization of the NK effector cells did not inhibit their ability to release NKCF. The results of these studies demonstrate that inhibition of NK CMC by rigidification of the target cell membrane results in cells that are inhibited in processing bound NKCF to lysis. Inhibition of NK CMC by rigidification of the NK effector cell results in defective trigger for activation of the NKCF release mechanism.

UI MeSH Term Description Entries
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D006644 Histiocytes Macrophages found in the TISSUES, as opposed to those found in the blood (MONOCYTES) or serous cavities (SEROUS MEMBRANE). Histiocyte
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

R C Roozemond, and M Mevissen, and D C Urli, and B Bonavida
March 1997, Veterinary immunology and immunopathology,
R C Roozemond, and M Mevissen, and D C Urli, and B Bonavida
February 1995, The Journal of veterinary medical science,
R C Roozemond, and M Mevissen, and D C Urli, and B Bonavida
January 1996, Veterinary immunology and immunopathology,
R C Roozemond, and M Mevissen, and D C Urli, and B Bonavida
January 1989, Immunopharmacology and immunotoxicology,
R C Roozemond, and M Mevissen, and D C Urli, and B Bonavida
January 1987, Advances in cancer research,
R C Roozemond, and M Mevissen, and D C Urli, and B Bonavida
July 1992, Cellular immunology,
Copied contents to your clipboard!