Removal of human polymorphonuclear leukocyte surface sialic acid inhibits reexpression (or recycling) of formyl peptide receptors. A possible explanation for its effect on formyl peptide-induced polymorphonuclear leukocyte chemotaxis. 1987

H D Perez, and F Elfman, and E Lobo

Removal of surface sialic acid specifically inhibits human polymorphonuclear leukocyte (PMN) chemotactic responses to N-formyl-methionyl-leucyl-phenylalanine (FMLP). Neuraminidase-treated (NT)-PMN bound and internalized [3H]FMLP (used as receptor marker) as well as normal PMN. NT-PMN, however, retained more [3H]FMLP-associated radioactivity than normal PMN. Subcellular fractionation studies demonstrated that NT-PMN retained more sedimentable (100,000 X G for 180 min) [3H]FMLP-associated radioactivity within light Golgi-containing fractions than normal PMN. Furthermore, NT-PMN exhibited a defect in their ability to reexpress (or recycle) a population of FMLP receptors. Abnormal receptor recycling was associated with inhibition of FMLP-induced PMN chemotaxis. Thus, it appears that recycling of formyl peptide receptors may be necessary for optimal PMN chemotactic responses to FMLP. We postulate that removal of PMN surface sialic acid inhibits FMLP-induced PMN chemotaxis by blocking the reexpression (or recycling) of a population of formyl peptide receptors, perhaps by preventing trafficking of desialated receptors through a light Golgi pathway.

UI MeSH Term Description Entries
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009439 Neuraminidase An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992) Sialidase,Exo-alpha-Sialidase,N-Acylneuraminate Glycohydrolases,Oligosaccharide Sialidase,Exo alpha Sialidase,Glycohydrolases, N-Acylneuraminate,N Acylneuraminate Glycohydrolases,Sialidase, Oligosaccharide
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002634 Chemotaxis, Leukocyte The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction. Leukotaxis,Leukocyte Chemotaxis
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling

Related Publications

H D Perez, and F Elfman, and E Lobo
December 1982, Journal of immunology (Baltimore, Md. : 1950),
H D Perez, and F Elfman, and E Lobo
January 1989, International journal of tissue reactions,
H D Perez, and F Elfman, and E Lobo
December 1976, Biochimica et biophysica acta,
H D Perez, and F Elfman, and E Lobo
December 1986, Biochemical and biophysical research communications,
H D Perez, and F Elfman, and E Lobo
March 1980, Journal of clinical & laboratory immunology,
H D Perez, and F Elfman, and E Lobo
September 1979, Acta virologica,
H D Perez, and F Elfman, and E Lobo
April 1994, The British journal of oral & maxillofacial surgery,
H D Perez, and F Elfman, and E Lobo
January 1985, Journal of cellular biochemistry,
Copied contents to your clipboard!