The protective effect of Eleutheroside E against the mechanical barrier dysfunction triggered by lipopolysaccharide in IPEC-J2 cells. 2023

Huijuan Li, and Rui Han, and Feng Yong, and Yueli Fan, and Bao Zhao, and Xiaocai Hu, and Tianrui Zhang, and Dongsheng Che
College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.

Eleutheroside E (EE) exhibits immunocompetence, antioxidant, and anti-inflammatory activity. Lipopolysaccharide (LPS) can elicit a strong immune response. In vitro experiments were used to explore whether EE protects intestinal porcine jejunum epithelial cells (IPEC-J2) barriers from LPS stress. The experiment was divided into group C (control group: complete medium), group E (group C + 0.1 mg/mL EE), group L (group C + 10 μg/mL LPS), and group EL (adding 0.1 mg/mL EE for 6 h, and then adding 10 μg/mL LPS for culture). Finally, the cell proliferation, permeability, mRNA expression of cytokines, mRNA and protein expression of tight junctions (TJs) were analyzed. The result show that, when compared to the C group, EE significantly promoted the proliferation of IPEC-J2 at 58 h and showed low permeability (P < 0.05), the anti-inflammatory cytokines IL-10 and TGF-β mRNA expression were increased extremely significantly, the inflammatory cytokines IL-6, TNF-α, and IFN-γ mRNA expression were extremely significantly decreased (P < 0.01), the mRNA and protein expression of TJ were significantly increased in group E (P < 0.05). However, LPS showed a damaging effect. EL group compared with L group, the cell index (CI) value was higher at 58 h (P < 0.05), the permeability was significantly lower (P < 0.05), the mRNA expressions of the inflammatory cytokines were down-regulated(P < 0.01), and the TJ mRNA and protein relative expression were increased (P < 0.05). In summary, the addition of EE protects the LPS-induced increase in permeability of IPEC-J2, potentially by expressing high levels of TJ proteins and inhibiting the increase of inflammatory cytokines.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine

Related Publications

Huijuan Li, and Rui Han, and Feng Yong, and Yueli Fan, and Bao Zhao, and Xiaocai Hu, and Tianrui Zhang, and Dongsheng Che
July 2021, Research in veterinary science,
Huijuan Li, and Rui Han, and Feng Yong, and Yueli Fan, and Bao Zhao, and Xiaocai Hu, and Tianrui Zhang, and Dongsheng Che
January 2020, The American journal of Chinese medicine,
Huijuan Li, and Rui Han, and Feng Yong, and Yueli Fan, and Bao Zhao, and Xiaocai Hu, and Tianrui Zhang, and Dongsheng Che
June 2013, Molecular and cellular biochemistry,
Huijuan Li, and Rui Han, and Feng Yong, and Yueli Fan, and Bao Zhao, and Xiaocai Hu, and Tianrui Zhang, and Dongsheng Che
April 2024, BMC veterinary research,
Huijuan Li, and Rui Han, and Feng Yong, and Yueli Fan, and Bao Zhao, and Xiaocai Hu, and Tianrui Zhang, and Dongsheng Che
August 2022, International journal of molecular sciences,
Huijuan Li, and Rui Han, and Feng Yong, and Yueli Fan, and Bao Zhao, and Xiaocai Hu, and Tianrui Zhang, and Dongsheng Che
October 2022, International journal of molecular sciences,
Huijuan Li, and Rui Han, and Feng Yong, and Yueli Fan, and Bao Zhao, and Xiaocai Hu, and Tianrui Zhang, and Dongsheng Che
August 2023, Microbial pathogenesis,
Huijuan Li, and Rui Han, and Feng Yong, and Yueli Fan, and Bao Zhao, and Xiaocai Hu, and Tianrui Zhang, and Dongsheng Che
August 2023, Toxicology,
Huijuan Li, and Rui Han, and Feng Yong, and Yueli Fan, and Bao Zhao, and Xiaocai Hu, and Tianrui Zhang, and Dongsheng Che
March 2024, Environmental toxicology,
Huijuan Li, and Rui Han, and Feng Yong, and Yueli Fan, and Bao Zhao, and Xiaocai Hu, and Tianrui Zhang, and Dongsheng Che
February 2023, Toxicology letters,
Copied contents to your clipboard!