CX3CL1 promotes cell sensitivity to ferroptosis and is associated with the tumor microenvironment in clear cell renal cell carcinoma. 2022

Qiming Gong, and Zhiting Guo, and Wenjuan Sun, and Xiuri Du, and Yan Jiang, and Fahui Liu
Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road, Baise, 533000, Guangxi, China.

BACKGROUND An increasing number of studies have demonstrated that CX3CL1 is involved in the development of tumors and may thus be considered a new potential therapeutic target for them. However, the function of CX3CL1 in clear cell renal cell carcinoma (ccRCC) remains poorly defined. METHODS The pan-cancer expression pattern and prognostic value of CX3CL1 were evaluated in this study. Moreover, the relationship of CX3CL1 expression with the tumor microenvironment, especially the tumor immune microenvironment, was analyzed. Our analyses employed public repository data. Additionally, we generated stable CX3CL1-overexpressing 786-O cells to determine the role of CX3CL1 in vitro via cell viability and transwell assays. A xenograft tumor model was used to determine the role of CX3CL1 in vivo. The association between CX3CL1 and ferroptosis sensitivity of tumor cells was assessed using Ferrostatin-1. RESULTS Our findings indicated the involvement of CX3CL1 in the occurrence and development of ccRCC by acting as a tumor suppressor. We also found that ccRCC patients with high CX3CL1 expression showed better clinical outcomes than those with low CX3CL1 expression. The findings of our epigenetic study suggested that the expression of CX3CL1 in ccRCC is correlated with its DNA methylation level. Furthermore, the CX3CL1 expression level was closely related to the infiltration level of CD8+ T cells into the tumor microenvironment (TME). CX3CL1 showed different predictive values in different immunotherapy cohorts. Finally, CX3CL1 overexpression inhibited tumor cell proliferation and metastasis and promoted tumor ferroptosis sensitivity in ccRCC. CONCLUSIONS This study revealed the role of CX3CL1 as a tumor suppressor in ccRCC. Our findings indicated that CX3CL1 plays a crucial role in regulating the ccRCC TME and is a potential predictor of immunotherapy outcomes in ccRCC. We also found that CX3CL1 can promote ferroptosis sensitivity in ccRCC cells.

UI MeSH Term Description Entries
D007680 Kidney Neoplasms Tumors or cancers of the KIDNEY. Cancer of Kidney,Kidney Cancer,Renal Cancer,Cancer of the Kidney,Neoplasms, Kidney,Renal Neoplasms,Cancer, Kidney,Cancer, Renal,Cancers, Kidney,Cancers, Renal,Kidney Cancers,Kidney Neoplasm,Neoplasm, Kidney,Neoplasm, Renal,Neoplasms, Renal,Renal Cancers,Renal Neoplasm
D002292 Carcinoma, Renal Cell A heterogeneous group of sporadic or hereditary carcinoma derived from cells of the KIDNEYS. There are several subtypes including the clear cells, the papillary, the chromophobe, the collecting duct, the spindle cells (sarcomatoid), or mixed cell-type carcinoma. Adenocarcinoma, Renal Cell,Carcinoma, Hypernephroid,Grawitz Tumor,Hypernephroma,Renal Carcinoma,Adenocarcinoma Of Kidney,Adenocarcinoma, Renal,Chromophil Renal Cell Carcinoma,Chromophobe Renal Cell Carcinoma,Clear Cell Renal Carcinoma,Clear Cell Renal Cell Carcinoma,Collecting Duct Carcinoma,Collecting Duct Carcinoma (Kidney),Collecting Duct Carcinoma of the Kidney,Nephroid Carcinoma,Papillary Renal Cell Carcinoma,Renal Cell Cancer,Renal Cell Carcinoma,Renal Cell Carcinoma, Papillary,Renal Collecting Duct Carcinoma,Sarcomatoid Renal Cell Carcinoma,Adenocarcinoma Of Kidneys,Adenocarcinomas, Renal Cell,Cancer, Renal Cell,Carcinoma, Collecting Duct,Carcinoma, Collecting Duct (Kidney),Carcinoma, Nephroid,Carcinoma, Renal,Carcinomas, Collecting Duct,Carcinomas, Collecting Duct (Kidney),Carcinomas, Renal Cell,Collecting Duct Carcinomas,Collecting Duct Carcinomas (Kidney),Hypernephroid Carcinoma,Hypernephroid Carcinomas,Hypernephromas,Kidney, Adenocarcinoma Of,Nephroid Carcinomas,Renal Adenocarcinoma,Renal Adenocarcinomas,Renal Carcinomas,Renal Cell Adenocarcinoma,Renal Cell Adenocarcinomas,Renal Cell Cancers,Renal Cell Carcinomas,Tumor, Grawitz
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000079403 Ferroptosis A form of REGULATED CELL DEATH initiated by oxidative perturbations of the intracellular microenvironment that is under constitutive control by glutathione peroxidase 4 and can be inhibited by iron chelators and lipophilic antioxidants. Oxytosis
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D054428 Chemokine CX3CL1 A CX3C chemokine that is a transmembrane protein found on the surface of cells. The soluble form of chemokine CX3CL1 can be released from cell surface by proteolysis and act as a chemoattractant that may be involved in the extravasation of leukocytes into inflamed tissues. The membrane form of the protein may also play a role in cell adhesion. CX3CL1 Chemokine,Chemokine (C-X3-C Motif) Ligand 1,Fractalkine,Neurotactin,CX3CL1, Chemokine,Chemokine, CX3CL1
D059016 Tumor Microenvironment The milieu surrounding neoplasms consisting of cells, vessels, soluble factors, and molecules, that can influence and be influenced by, the neoplasm's growth. Cancer Microenvironment,Cancer Microenvironments,Microenvironment, Cancer,Microenvironment, Tumor,Microenvironments, Cancer,Microenvironments, Tumor,Tumor Microenvironments
D018414 CD8-Positive T-Lymphocytes A critical subpopulation of regulatory T-lymphocytes involved in MHC Class I-restricted interactions. They include both cytotoxic T-lymphocytes (T-LYMPHOCYTES, CYTOTOXIC) and CD8+ suppressor T-lymphocytes. Suppressor T-Lymphocytes, CD8-Positive,T8 Cells,T8 Lymphocytes,CD8-Positive Lymphocytes,Suppressor T-Cells, CD8-Positive,CD8 Positive Lymphocytes,CD8 Positive T Lymphocytes,CD8-Positive Lymphocyte,CD8-Positive Suppressor T-Cell,CD8-Positive Suppressor T-Cells,CD8-Positive Suppressor T-Lymphocyte,CD8-Positive Suppressor T-Lymphocytes,CD8-Positive T-Lymphocyte,Cell, T8,Cells, T8,Lymphocyte, CD8-Positive,Lymphocyte, T8,Lymphocytes, CD8-Positive,Lymphocytes, T8,Suppressor T Cells, CD8 Positive,Suppressor T Lymphocytes, CD8 Positive,Suppressor T-Cell, CD8-Positive,Suppressor T-Lymphocyte, CD8-Positive,T-Cell, CD8-Positive Suppressor,T-Cells, CD8-Positive Suppressor,T-Lymphocyte, CD8-Positive,T-Lymphocyte, CD8-Positive Suppressor,T-Lymphocytes, CD8-Positive,T-Lymphocytes, CD8-Positive Suppressor,T8 Cell,T8 Lymphocyte

Related Publications

Qiming Gong, and Zhiting Guo, and Wenjuan Sun, and Xiuri Du, and Yan Jiang, and Fahui Liu
July 2020, Aging,
Qiming Gong, and Zhiting Guo, and Wenjuan Sun, and Xiuri Du, and Yan Jiang, and Fahui Liu
June 2024, Precision clinical medicine,
Qiming Gong, and Zhiting Guo, and Wenjuan Sun, and Xiuri Du, and Yan Jiang, and Fahui Liu
May 2023, International journal of molecular sciences,
Qiming Gong, and Zhiting Guo, and Wenjuan Sun, and Xiuri Du, and Yan Jiang, and Fahui Liu
October 2019, Cancer discovery,
Qiming Gong, and Zhiting Guo, and Wenjuan Sun, and Xiuri Du, and Yan Jiang, and Fahui Liu
April 2023, International journal of molecular sciences,
Qiming Gong, and Zhiting Guo, and Wenjuan Sun, and Xiuri Du, and Yan Jiang, and Fahui Liu
November 2023, iScience,
Qiming Gong, and Zhiting Guo, and Wenjuan Sun, and Xiuri Du, and Yan Jiang, and Fahui Liu
June 2024, Toxicology and applied pharmacology,
Qiming Gong, and Zhiting Guo, and Wenjuan Sun, and Xiuri Du, and Yan Jiang, and Fahui Liu
January 2021, Frontiers in cell and developmental biology,
Qiming Gong, and Zhiting Guo, and Wenjuan Sun, and Xiuri Du, and Yan Jiang, and Fahui Liu
January 2022, Frontiers in oncology,
Qiming Gong, and Zhiting Guo, and Wenjuan Sun, and Xiuri Du, and Yan Jiang, and Fahui Liu
January 2022, American journal of translational research,
Copied contents to your clipboard!