Copper induces nitrification by ammonia-oxidizing bacteria and archaea in pastoral soils. 2023

Dumsane Themba Matse, and Paramsothy Jeyakumar, and Peter Bishop, and Christopher W N Anderson
Environmental Science Group, School of Agriculture and Environment, Massey Univ., Private Bag 11 222, Palmerston North, 4442, New Zealand.

Copper (Cu) is the main co-factor in the functioning of the ammonia monooxygenase (AMO) enzyme, which is responsible for the first step of ammonia oxidation. We report a greenhouse-based pot experiment that examines the response of ammonia-oxidizing bacteria and archaea (AOB and AOA) to different bioavailable Cu concentrations in three pastoral soils (Recent, Pallic, and Pumice soils) planted with ryegrass (Lolium perenne L.). Five treatments were used: control (no urine and Cu), urine only at 300 mg N kg-1 soil (Cu0), urine + 1 mg Cu kg-1 soil (Cu1), urine + 10 mg Cu kg-1 soil (Cu10), and urine + 100 mg Cu kg-1 soil (Cu100). Pots were destructively sampled at Day 0, 1, 7, 15, and 25 after urine application. The AOB/AOA amoA gene abundance was analyzed by real-time quantitative polymerase chain reaction at Days 1 and 15. The AOB amoA gene abundance increased 10.0- and 22.6-fold in the Recent soil and 2.1- and 2.5-fold in the Pallic soil for the Cu10 compared with Cu0 on Days 1 and 15, respectively. In contrast, the Cu100 was associated with a reduction in AOB amoA gene abundance in the Recent and Pallic soils but not in the Pumice soil. This may be due to the influence of soil cation exchange capacity differences on the bioavailable Cu. Bioavailable Cu in the Recent and Pallic soils influenced nitrification and AOB amoA gene abundance, as evidenced by the strong positive correlation between bioavailable Cu, nitrification, and AOB amoA. However, bioavailable Cu did not influence the nitrification and AOA amoA gene abundance increase.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D000641 Ammonia A colorless alkaline gas. It is formed in the body during decomposition of organic materials during a large number of metabolically important reactions. Note that the aqueous form of ammonia is referred to as AMMONIUM HYDROXIDE.
D001105 Archaea One of the three domains of life (the others being BACTERIA and Eukarya), formerly called Archaebacteria under the taxon Bacteria, but now considered separate and distinct. They are characterized by: (1) the presence of characteristic tRNAs and ribosomal RNAs; (2) the absence of peptidoglycan cell walls; (3) the presence of ether-linked lipids built from branched-chain subunits; and (4) their occurrence in unusual habitats. While archaea resemble bacteria in morphology and genomic organization, they resemble eukarya in their method of genomic replication. The domain contains at least four kingdoms: CRENARCHAEOTA; EURYARCHAEOTA; NANOARCHAEOTA; and KORARCHAEOTA. Archaebacteria,Archaeobacteria,Archaeon,Archebacteria
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D012987 Soil The unconsolidated mineral or organic matter on the surface of the earth that serves as a natural medium for the growth of land plants. Peat,Humus,Soils
D012988 Soil Microbiology The presence of bacteria, viruses, and fungi in the soil. This term is not restricted to pathogenic organisms. Microbiology, Soil
D058465 Nitrification A process facilitated by specialized bacteria involving the oxidations of ammonium to nitrite and nitrite to nitrate. Aerobic Ammonia Oxidation,Nitrite Oxidation,Aerobic Ammonia Oxidations,Ammonia Oxidation, Aerobic,Nitrifications,Nitrite Oxidations,Oxidation, Aerobic Ammonia,Oxidation, Nitrite

Related Publications

Dumsane Themba Matse, and Paramsothy Jeyakumar, and Peter Bishop, and Christopher W N Anderson
January 2014, PloS one,
Dumsane Themba Matse, and Paramsothy Jeyakumar, and Peter Bishop, and Christopher W N Anderson
March 2022, Environmental science and pollution research international,
Dumsane Themba Matse, and Paramsothy Jeyakumar, and Peter Bishop, and Christopher W N Anderson
March 2022, The Science of the total environment,
Dumsane Themba Matse, and Paramsothy Jeyakumar, and Peter Bishop, and Christopher W N Anderson
January 2012, Frontiers in microbiology,
Dumsane Themba Matse, and Paramsothy Jeyakumar, and Peter Bishop, and Christopher W N Anderson
November 2009, FEMS microbiology ecology,
Dumsane Themba Matse, and Paramsothy Jeyakumar, and Peter Bishop, and Christopher W N Anderson
November 2022, Scientific reports,
Dumsane Themba Matse, and Paramsothy Jeyakumar, and Peter Bishop, and Christopher W N Anderson
March 2021, Environmental science and pollution research international,
Dumsane Themba Matse, and Paramsothy Jeyakumar, and Peter Bishop, and Christopher W N Anderson
May 2012, The ISME journal,
Dumsane Themba Matse, and Paramsothy Jeyakumar, and Peter Bishop, and Christopher W N Anderson
January 2023, Frontiers in microbiology,
Dumsane Themba Matse, and Paramsothy Jeyakumar, and Peter Bishop, and Christopher W N Anderson
November 2011, Biotechnology and bioengineering,
Copied contents to your clipboard!