Separation of ribosomal subunits of Escherichia coli by Sepharose chromatography using reverse salt gradient. 1978

S V Kirillov, and V I Makhno, and N N Peshin, and Y P Semenkov

A mixture of 30 S and 50 S subunits quantitatively absorbs on a column of Sepharose--4B from the buffer: 0.02 M Tris--HCl, pH 7.5, containing 1.5 M (NH4)2SO4. During elution by reverse gradient of ammonium sulphate (1.5--0.05 M) the subunits are eluted at different salt concentrations. Complete separation of subunits is attained in the absence of Mg2+ ions. The 30 S subunits prepared from 70 S ribosomes according to this procedure are fully active in the codon--dependent binding of a specific aminoacyl--tRNA. After their reassociation with 50 S subunits isolated by zonal centrifugation, the resulting 70 S ribosomes are active in polypeptide synthesis at the same degree as control 70 S ribosomes in which both types of subunits were prepared by zonal centrifugation. The initial 70 S ribosomes for the chromatographic separation into subunits can be obtained by their pelleting from a crude extract with subsequent washing with concentrated solutions of NH4Cl in the ultracentrifuge, or by salt fractionation of the crude extract according to a slightly modified procedure of Kurland.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

S V Kirillov, and V I Makhno, and N N Peshin, and Y P Semenkov
March 1975, Proceedings of the National Academy of Sciences of the United States of America,
S V Kirillov, and V I Makhno, and N N Peshin, and Y P Semenkov
March 1981, Plasmid,
S V Kirillov, and V I Makhno, and N N Peshin, and Y P Semenkov
January 1979, Methods in enzymology,
S V Kirillov, and V I Makhno, and N N Peshin, and Y P Semenkov
November 1985, Analytical biochemistry,
S V Kirillov, and V I Makhno, and N N Peshin, and Y P Semenkov
May 1971, Biochemistry,
S V Kirillov, and V I Makhno, and N N Peshin, and Y P Semenkov
April 1967, Journal of chromatography,
S V Kirillov, and V I Makhno, and N N Peshin, and Y P Semenkov
January 1971, Biochimie,
S V Kirillov, and V I Makhno, and N N Peshin, and Y P Semenkov
April 1986, Biochimie,
S V Kirillov, and V I Makhno, and N N Peshin, and Y P Semenkov
July 1987, The Biochemical journal,
Copied contents to your clipboard!