Nutritional implications of inborn errors of amino acid metabolism. 1978

L Hambraeus

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D008297 Male Males
D008375 Maple Syrup Urine Disease An autosomal recessive inherited disorder with multiple forms of phenotypic expression, caused by a defect in the oxidative decarboxylation of branched-chain amino acids (AMINO ACIDS, BRANCHED-CHAIN). These metabolites accumulate in body fluids and render a "maple syrup" odor. The disease is divided into classic, intermediate, intermittent, and thiamine responsive subtypes. The classic form presents in the first week of life with ketoacidosis, hypoglycemia, emesis, neonatal seizures, and hypertonia. The intermediate and intermittent forms present in childhood or later with acute episodes of ataxia and vomiting. (From Adams et al., Principles of Neurology, 6th ed, p936) Branched-Chain Ketoaciduria,Thiamine Responsive Maple Syrup Urine Disease,BCKD Deficiency,Branched-Chain alpha-Keto Acid Dehydrogenase Deficiency,Classic Maple Syrup Urine Disease,Classical Maple Syrup Urine Disease,Intermediate Maple Syrup Urine Disease,Intermittent Maple Syrup Urine Disease,Keto Acid Decarboxylase Deficiency,MSUD (Maple Syrup Urine Disease),Maple Syrup Urine Disease, Classic,Maple Syrup Urine Disease, Classical,Maple Syrup Urine Disease, Intermediate,Maple Syrup Urine Disease, Intermittent,Maple Syrup Urine Disease, Thiamine Responsive,Maple Syrup Urine Disease, Thiamine-Responsive,Branched Chain Ketoaciduria,Branched Chain alpha Keto Acid Dehydrogenase Deficiency,Branched-Chain Ketoacidurias,Ketoaciduria, Branched-Chain,Ketoacidurias, Branched-Chain
D009747 Nutritional Physiological Phenomena The processes and properties of living organisms by which they take in and balance the use of nutritive materials for energy, heat production, or building material for the growth, maintenance, or repair of tissues and the nutritive properties of FOOD. Nutrition Physiological Phenomena,Nutrition Physiology,Nutrition Processes,Nutritional Physiology Phenomena,Nutrition Phenomena,Nutrition Physiological Concepts,Nutrition Physiological Phenomenon,Nutrition Process,Nutritional Phenomena,Nutritional Physiological Phenomenon,Nutritional Physiology,Nutritional Physiology Concepts,Nutritional Physiology Phenomenon,Nutritional Process,Nutritional Processes,Concept, Nutrition Physiological,Concept, Nutritional Physiology,Concepts, Nutrition Physiological,Concepts, Nutritional Physiology,Nutrition Physiological Concept,Nutritional Physiology Concept,Phenomena, Nutrition,Phenomena, Nutrition Physiological,Phenomena, Nutritional,Phenomena, Nutritional Physiological,Phenomena, Nutritional Physiology,Phenomenon, Nutrition Physiological,Phenomenon, Nutritional Physiological,Phenomenon, Nutritional Physiology,Physiological Concept, Nutrition,Physiological Concepts, Nutrition,Physiological Phenomena, Nutrition,Physiological Phenomena, Nutritional,Physiological Phenomenon, Nutrition,Physiological Phenomenon, Nutritional,Physiology Concept, Nutritional,Physiology Concepts, Nutritional,Physiology Phenomena, Nutritional,Physiology Phenomenon, Nutritional,Physiology, Nutrition,Physiology, Nutritional,Process, Nutrition,Process, Nutritional,Processes, Nutrition,Processes, Nutritional
D009751 Nutritional Requirements The amounts of various substances in food needed by an organism to sustain healthy life. Dietary Requirements,Nutrition Requirements,Dietary Requirement,Nutrition Requirement,Nutritional Requirement,Requirement, Dietary,Requirement, Nutrition,Requirement, Nutritional,Requirements, Dietary,Requirements, Nutrition,Requirements, Nutritional
D010661 Phenylketonurias A group of autosomal recessive disorders marked by a deficiency of the hepatic enzyme PHENYLALANINE HYDROXYLASE or less frequently by reduced activity of DIHYDROPTERIDINE REDUCTASE (i.e., atypical phenylketonuria). Classical phenylketonuria is caused by a severe deficiency of phenylalanine hydroxylase and presents in infancy with developmental delay; SEIZURES; skin HYPOPIGMENTATION; ECZEMA; and demyelination in the central nervous system. (From Adams et al., Principles of Neurology, 6th ed, p952). Biopterin Deficiency,Dihydropteridine Reductase Deficiency Disease,Hyperphenylalaninemia, Non-Phenylketonuric,Phenylalanine Hydroxylase Deficiency Disease,BH4 Deficiency,DHPR Deficiency,Deficiency Disease, Dihydropteridine Reductase,Deficiency Disease, Phenylalanine Hydroxylase,Deficiency Disease, Phenylalanine Hydroxylase, Severe,Dihydropteridine Reductase Deficiency,Folling Disease,Folling's Disease,HPABH4C,Hyperphenylalaninaemia,Hyperphenylalaninemia Caused by a Defect in Biopterin Metabolism,Hyperphenylalaninemia, BH4-Deficient, C,Hyperphenylalaninemia, Tetrahydrobiopterin-Deficient, Due To DHPR Deficiency,Non-Phenylketonuric Hyperphenylalaninemia,Oligophrenia Phenylpyruvica,PAH Deficiency,PKU, Atypical,Phenylalanine Hydroxylase Deficiency,Phenylalanine Hydroxylase Deficiency Disease, Severe,Phenylketonuria,Phenylketonuria I,Phenylketonuria II,Phenylketonuria Type 2,Phenylketonuria, Atypical,Phenylketonuria, Classical,QDPR Deficiency,Quinoid Dihydropteridine Reductase Deficiency,Tetrahydrobiopterin Deficiency,Atypical PKU,Atypical Phenylketonuria,Biopterin Deficiencies,Classical Phenylketonuria,Deficiency, BH4,Deficiency, Biopterin,Deficiency, DHPR,Deficiency, Dihydropteridine Reductase,Deficiency, PAH,Deficiency, Phenylalanine Hydroxylase,Deficiency, QDPR,Deficiency, Tetrahydrobiopterin,Disease, Folling,Disease, Folling's,Hyperphenylalaninemia, Non Phenylketonuric,Non Phenylketonuric Hyperphenylalaninemia,Non-Phenylketonuric Hyperphenylalaninemias
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D003555 Cystinuria An inherited disorder due to defective reabsorption of CYSTINE and other BASIC AMINO ACIDS by the PROXIMAL RENAL TUBULES. This form of aminoaciduria is characterized by the abnormally high urinary levels of cystine; LYSINE; ARGININE; and ORNITHINE. Mutations involve the amino acid transport protein gene SLC3A1. Cystinurias
D004044 Dietary Proteins Proteins obtained from foods. They are the main source of the ESSENTIAL AMINO ACIDS. Proteins, Dietary,Dietary Protein,Protein, Dietary

Related Publications

L Hambraeus
January 1977, Nutrition and metabolism,
L Hambraeus
January 1969, British medical bulletin,
L Hambraeus
January 1995, Ryoikibetsu shokogun shirizu,
L Hambraeus
November 2004, Nihon rinsho. Japanese journal of clinical medicine,
L Hambraeus
January 1972, Duodecim; laaketieteellinen aikakauskirja,
L Hambraeus
January 1996, Ryoikibetsu shokogun shirizu,
L Hambraeus
August 1999, Nihon rinsho. Japanese journal of clinical medicine,
L Hambraeus
January 1962, Duodecim; laaketieteellinen aikakauskirja,
L Hambraeus
October 1967, American journal of diseases of children (1960),
L Hambraeus
January 2002, Ryoikibetsu shokogun shirizu,
Copied contents to your clipboard!