Partial Depletion of Microglia Attenuates Long-Term Potentiation Deficits following Repeated Blast Traumatic Brain Injury in Organotypic Hippocampal Slice Cultures. 2023

Nevin Varghese, and Barclay Morrison
Department of Biomedical Engineering, Columbia University, New York, New York, USA.

Blast-induced traumatic brain injury (bTBI) has been a health concern in both military and civilian populations due to recent military and geopolitical conflicts. Military service members are frequently exposed to repeated bTBI throughout their training and deployment. Our group has previously reported compounding functional deficits as a result of increased number of blast exposures. In this study, we further characterized the decrease in long-term potentiation (LTP) by varying the blast injury severity and the inter-blast interval between two blast exposures. LTP deficits were attenuated with increasing inter-blast intervals. We also investigated changes in microglial activation; expression of CD68 was increased and expression of CD206 was decreased after multiple blast exposures. Expression of macrophage inflammatory protein (MIP)-1α, interleukin (IL)-1β, monocyte chemoattractant protein (MCP)-1, interferon gamma-inducible protein (IP)-10, and regulated on activation, normal T cell expressed and secreted (RANTES) increased, while expression of IL-10 decreased in the acute period after both single and repeated bTBI. By partially depleting microglia prior to injury, LTP deficits after injury were significantly reduced. Treatment with the novel drug, MW-189, prevented LTP deficits when administered immediately following a repeated bTBI and even when administered only for an acute period (24 h) between two blast injuries. These findings could inform the development of therapeutic strategies to treat the neurological deficits of repeated bTBI suggesting that microglia play a major role in functional neuronal deficits and may be a viable therapeutic target to lessen the neurophysiological deficits after bTBI.

UI MeSH Term Description Entries
D001753 Blast Injuries Injuries resulting when a person is struck by particles impelled with violent force from an explosion. Blast causes pulmonary concussion and hemorrhage, laceration of other thoracic and abdominal viscera, ruptured ear drums, and minor effects in the central nervous system. (From Dorland, 27th ed) Injuries, Blast,Blast Injury,Injury, Blast
D005107 Explosions Sudden, violent, and often destructive expansion of gases which propagates energy outward, such as a shock wave, ejecting fragments and debris at high velocities. Explosion
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000070642 Brain Injuries, Traumatic A form of acquired brain injury which occurs when a sudden trauma causes damage to the brain. Trauma, Brain,Traumatic Brain Injury,Encephalopathy, Traumatic,Injury, Brain, Traumatic,TBI (Traumatic Brain Injury),TBIs (Traumatic Brain Injuries),Traumatic Encephalopathy,Brain Injury, Traumatic,Brain Trauma,Brain Traumas,Encephalopathies, Traumatic,TBI (Traumatic Brain Injuries),Traumas, Brain,Traumatic Brain Injuries,Traumatic Encephalopathies
D017628 Microglia The third type of glial cell, along with astrocytes and oligodendrocytes (which together form the macroglia). Microglia vary in appearance depending on developmental stage, functional state, and anatomical location; subtype terms include ramified, perivascular, ameboid, resting, and activated. Microglia clearly are capable of phagocytosis and play an important role in a wide spectrum of neuropathologies. They have also been suggested to act in several other roles including in secretion (e.g., of cytokines and neural growth factors), in immunological processing (e.g., antigen presentation), and in central nervous system development and remodeling. Microglial Cell,Cell, Microglial,Microglial Cells,Microglias
D017774 Long-Term Potentiation A persistent increase in synaptic efficacy, usually induced by appropriate activation of the same synapses. The phenomenological properties of long-term potentiation suggest that it may be a cellular mechanism of learning and memory. Long Term Potentiation,Long-Term Potentiations,Potentiation, Long-Term,Potentiations, Long-Term

Related Publications

Nevin Varghese, and Barclay Morrison
April 2016, Journal of neurotrauma,
Nevin Varghese, and Barclay Morrison
January 1995, Experimental brain research,
Nevin Varghese, and Barclay Morrison
January 2006, Nature protocols,
Nevin Varghese, and Barclay Morrison
January 2006, Nature protocols,
Nevin Varghese, and Barclay Morrison
January 2006, Journal of neuroscience methods,
Nevin Varghese, and Barclay Morrison
January 2017, PloS one,
Nevin Varghese, and Barclay Morrison
January 2019, Methods in molecular biology (Clifton, N.J.),
Nevin Varghese, and Barclay Morrison
June 1999, Journal of neuroscience research,
Copied contents to your clipboard!