Many ventral root afferent fibers in the cat are third branches of dorsal root ganglion cells. 1987

J Kim, and H K Shin, and J M Chung
Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77550.

The arrangement of the ventral root afferent fibers was investigated in anesthetized and paralyzed cats. Single unit activity was recorded from a fascicle of the distal stump of the cut S1 dorsal root. Activity was elicited by stimulating the distal stump of the cut S1 ventral root. Attempts were then made to collide this activity with that elicited by stimulation of the S1 spinal nerve. Single unit activity elicited by ventral root stimulation was recorded from a total of 33 axons. In 17 of these, the activity collided with that elicited by peripheral stimulation. These results indicate that more than half the sampled population of ventral root afferent fibers are branches of dorsal root ganglion cells that have at least 3 processes: one in the dorsal root, one in the ventral root and one in a peripheral nerve. In 10 of these units, the conduction velocity of each of 3 processes was determined using the collision technique. The conduction velocities differed in the processes of a given ganglion cell, with conduction in the ventral root process generally being the slowest. The change in conduction velocity along the length of the ventral root was examined by comparing latency differences for the unit activity elicited by ventral root stimulation at different sites in the same root separated by known distances. The conduction velocity was found not to be uniform along the course of the ventral root. In many cases, the conduction velocity slowed down as the fiber approached the spinal cord. We conclude from the present study that many ventral root afferent fibers are the third branches of dorsal root ganglion cells that also have processes in the dorsal root and in a peripheral nerve. The sizes of each of these 3 processes of the dorsal root ganglion cell may differ; the ventral root process tends to be the smallest and is usually unmyelinated. Furthermore, many of the ventral root afferent fibers may taper as they approach the spinal cord.

UI MeSH Term Description Entries
D008297 Male Males
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

J Kim, and H K Shin, and J M Chung
April 1976, Brain research,
J Kim, and H K Shin, and J M Chung
May 1979, Neurosurgery,
J Kim, and H K Shin, and J M Chung
February 1983, Brain research,
J Kim, and H K Shin, and J M Chung
March 1986, Bollettino della Societa italiana di biologia sperimentale,
J Kim, and H K Shin, and J M Chung
May 1984, The Journal of comparative neurology,
J Kim, and H K Shin, and J M Chung
August 1985, Journal of neurophysiology,
J Kim, and H K Shin, and J M Chung
October 1993, Sheng li ke xue jin zhan [Progress in physiology],
J Kim, and H K Shin, and J M Chung
November 1978, Journal of neurobiology,
Copied contents to your clipboard!