Characterization of the guanosine 5'-triphosphate 3'-diphosphate and guanosine 5'-diphosphate 3'-diphosphate degradation reaction catalyzed by a specific pyrophosphorylase from Escherichia coli. 1978

E A Heinemeyer, and D Richter

Guanosine 5'-triphosphate 3'-diphosphate (pppGpp) and guanosine 5'-diphosphate 3'-diphosphate (ppGpp) are specifically degraded by a manganese-dependent pyrophosphorylase present in spoT+ but not in spoT- strains of Escherichia coli, indicating that the enzyme is the spoT gene product. The enzyme catalyzes the release of pyrophosphate from the 3' position of ppGpp or pppGpp, yielding ppG and pppG, respectively; pppGpp could not be detected as an intermediate in the decay reaction. Degradation of (p)ppGpp is optimal in the presence of 200 to 300 mM potassium or sodium acetate, at a pH of 7.5 to 8 and a temperature of 37 degrees C.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006150 Guanine Nucleotides Guanine Nucleotide,Guanosine Phosphates,Nucleotide, Guanine,Nucleotides, Guanine,Phosphates, Guanosine
D006158 Guanosine Pentaphosphate Guanosine 5'-triphosphate 2'(3')-diphosphate. A guanine nucleotide containing five phosphate groups. Three phosphate groups are esterified to the sugar moiety in the 5' position and the other two in the 2' or 3' position. This nucleotide serves as a messenger to turn off the synthesis of ribosomal RNA when amino acids are not available for protein synthesis. (p)ppGpp,Alarmone,Alarmone pppGpp,Bacterial Magic Spot pppGpp,ppprGpp,Guanosine 3'-Diphosphate 5'-Triphosphate,3'-Diphosphate 5'-Triphosphate, Guanosine,5'-Triphosphate, Guanosine 3'-Diphosphate,Guanosine 3' Diphosphate 5' Triphosphate,Pentaphosphate, Guanosine,pppGpp, Alarmone
D006159 Guanosine Tetraphosphate Guanosine 5'-diphosphate 2'(3')-diphosphate. A guanine nucleotide containing four phosphate groups. Two phosphate groups are esterified to the sugar moiety in the 5' position and the other two in the 2' or 3' position. This nucleotide serves as a messenger to turn off the synthesis of ribosomal RNA when amino acids are not available for protein synthesis. Synonym: magic spot I. Alarmone ppGpp,Bacterial Magic Spot ppGpp,Guanosine 5'-(trihydrogen diphosphate), mono(trihydrogen diphosphate) (ester),Guanosine 5'-diphosphate 2'(3')-diphosphate,ppGpp,Guanosine 3'-Diphosphate 5'-Diphosphate,Guanosine 5'-Diphosphate 3'-Diphosphate,3'-Diphosphate 5'-Diphosphate, Guanosine,5'-Diphosphate 3'-Diphosphate, Guanosine,Guanosine 3' Diphosphate 5' Diphosphate,Guanosine 5' Diphosphate 3' Diphosphate,Tetraphosphate, Guanosine,ppGpp, Alarmone
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

E A Heinemeyer, and D Richter
February 1979, Molecular & general genetics : MGG,
E A Heinemeyer, and D Richter
November 1976, Canadian journal of biochemistry,
E A Heinemeyer, and D Richter
January 1977, Biochimica et biophysica acta,
E A Heinemeyer, and D Richter
December 1980, Canadian journal of microbiology,
Copied contents to your clipboard!