Contralateral intramuscular acupuncture-like electrical stimulation differentially changes the short-latency responses to muscle stretch. 1987

N J Dawson, and O C Lippold, and R J Milne
Department of Physiology, School of Medicine, University of Auckland, New Zealand.

Measurements were made from the human first dorsal interosseous and extensor digitorum communis muscles of the surface electromyographic activity reflexly produced by brief stretch of the muscle. For the first dorsal interosseous muscle, reflex EMG activity was also produced by electrical stimulation of the ulnar nerve at the wrist. The procedures were carried out before, during, and after 25 min of nonspecific, low-frequency electrical stimulation to the contralateral arm delivered through intramuscular electrodes. Control stimulation was delivered subcutaneously. The EMG recorded during a maintained contraction was rectified, filtered, and averaged. Two reflex components (M1 and M2) of the EMG response to muscle stretch or ulnar nerve stimulation were investigated. During nonspecific intramuscular stimulation to the contralateral arm, M1 responses of the extensor digitorum communis were depressed, initially by 37%. The effect began to fade during stimulation but extended beyond it. Reflex responses were elicited alternately by brief stretch of the first dorsal interosseus muscle and by electrical stimulation of the ulnar nerve in the same experiment. Nonspecific intramuscular stimulation to the contralateral arm depressed the M1 response to stretch, but had no effect on the M1 response to electrical stimulation. It is concluded that nonspecific intramuscular electrical stimulation reduces the amplitude of the M1 component of the response to brief stretch of contralateral muscle, either through depression of fusimotor activity or inhibition of oligosynaptic pathways that contribute to the early reflex response.

UI MeSH Term Description Entries
D008297 Male Males
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses

Related Publications

N J Dawson, and O C Lippold, and R J Milne
December 1981, Brain research,
N J Dawson, and O C Lippold, and R J Milne
September 1986, Acta physiologica Scandinavica,
N J Dawson, and O C Lippold, and R J Milne
July 1979, The Journal of physiology,
N J Dawson, and O C Lippold, and R J Milne
June 2022, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
N J Dawson, and O C Lippold, and R J Milne
January 1981, Acta neurobiologiae experimentalis,
N J Dawson, and O C Lippold, and R J Milne
July 2000, Journal of neurophysiology,
N J Dawson, and O C Lippold, and R J Milne
February 2002, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology,
N J Dawson, and O C Lippold, and R J Milne
January 1983, Advances in neurology,
N J Dawson, and O C Lippold, and R J Milne
May 1987, Brain research,
Copied contents to your clipboard!