Interaction of contractile responses in canine tracheal smooth muscle. 1987

S J Gunst, and J Q Stropp, and N A Flavahan
Division of Thoracic Diseases and Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905.

Concentration-response curves for norepinephrine, acetylcholine, and 5-hydroxytryptamine were obtained in vitro alone and after precontraction with histamine, 5-hydroxytryptamine, or acetylcholine. Responses obtained to each agonist after precontraction were greater than responses to the agonist alone after subtraction of the force due to the precontracting stimulus. Augmentation of responses after precontraction was the greatest for norepinephrine, less for 5-hydroxytryptamine, and least for acetylcholine. Verapamil had no significant effect on the augmentation of responses to either 5-hydroxytryptamine or acetylcholine caused by precontraction. When the efficacy of acetylcholine was decreased by receptor alkylation with phenoxybenzamine, the augmentation of responses to acetylcholine caused by precontraction with histamine was significantly enhanced. Differences in the magnitude of the effect of precontraction on responses to different agonists may reflect differences in their efficiency of stimulus-response coupling in canine tracheal smooth muscle, or they may result from an increased expression of distinct receptors or receptor-mediated effects uncovered by the facilitory stimuli.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010643 Phenoxybenzamine An alpha-adrenergic antagonist with long duration of action. It has been used to treat hypertension and as a peripheral vasodilator. Dibenylene,Dibenyline,Dibenziran,Dibenzylin,Dibenzyline,Dibenzyran,Phenoxybenzamine Hydrochloride,Hydrochloride, Phenoxybenzamine
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S J Gunst, and J Q Stropp, and N A Flavahan
March 1982, Journal of applied physiology: respiratory, environmental and exercise physiology,
S J Gunst, and J Q Stropp, and N A Flavahan
August 1986, The Journal of pharmacology and experimental therapeutics,
S J Gunst, and J Q Stropp, and N A Flavahan
January 1986, The American journal of physiology,
S J Gunst, and J Q Stropp, and N A Flavahan
August 1989, The American journal of physiology,
S J Gunst, and J Q Stropp, and N A Flavahan
January 2001, Pulmonary pharmacology & therapeutics,
S J Gunst, and J Q Stropp, and N A Flavahan
April 1995, Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases,
S J Gunst, and J Q Stropp, and N A Flavahan
August 1980, Anesthesiology,
S J Gunst, and J Q Stropp, and N A Flavahan
February 2002, Journal of toxicology and environmental health. Part A,
S J Gunst, and J Q Stropp, and N A Flavahan
June 1988, Journal of autonomic pharmacology,
S J Gunst, and J Q Stropp, and N A Flavahan
September 1999, The Journal of physiology,
Copied contents to your clipboard!