Studies on the mechanism of oxidative phosphorylation. Flow-force relationships in mitochondrial energy-linked reactions. 1987

A Matsuno-Yagi, and Y Hatefi
Department of Basic and Clinical Research, Scripps Clinic and Research Foundation, La Jolla, California 92037.

The relationship between the steady-state level of membrane potential (delta psi) and the rates of energy production and consumption has been studied in mitochondria and submitochondrial particles. The energy-linked reactions investigated were oxidative phosphorylation (with NADH, succinate, and beta-hydroxybutyrate as respiratory substrates) and nucleoside triphosphate-driven transhydrogenation from NADH to NADP and uphill electron transfer from succinate to NAD. Results have shown the following. 1) Attenuation of the rates of the energy-producing reactions results in a parallel change in the rates of the energy-consuming reactions with little or no change in the magnitude of steady-state delta psi. 2) At low rates of energy production and consumption, steady-state delta psi decreases. However, this is due largely to the energy leak of the system which lowers static-head delta psi when the rate of energy production is slow. 3) When the rate of energy production and static-head delta psi are held constant, and the rate of energy consumption is diminished by partial inhibition or the use of suboptimal conditions (e.g. subsaturating substrate concentrations), then even a small decrease in the rate of energy consumption results in an upward adjustment of the level of steady-state delta psi. The lower the rate of energy input, the greater the upward adjustment of steady-state delta psi upon suppression of the rate of energy consumption. 4) The above results have been discussed with regard to the role of bulk-phase delta mu H+ or delta psi in the mitochondrial energy transfer reactions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013367 Submitochondrial Particles The various filaments, granules, tubules or other inclusions within mitochondria. Particle, Submitochondrial,Particles, Submitochondrial,Submitochondrial Particle

Related Publications

A Matsuno-Yagi, and Y Hatefi
August 1986, FEBS letters,
A Matsuno-Yagi, and Y Hatefi
August 1966, Archives of biochemistry and biophysics,
A Matsuno-Yagi, and Y Hatefi
June 1991, Biochimica et biophysica acta,
A Matsuno-Yagi, and Y Hatefi
January 1974, Annual review of biophysics and bioengineering,
A Matsuno-Yagi, and Y Hatefi
September 1964, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!