Eye movements induced by pontine stimulation: interaction with visually triggered saccades. 1987

D L Sparks, and L E Mays, and J D Porter
Department of Physiology and Biophysics, University of Alabama at Birmingham 35294.

1. Rhesus monkeys were trained to look to brief visual targets presented in an otherwise darkened room. On some trials, after the visual target was extinguished but before a saccade to it could be initiated, the eyes were driven to another orbital position by microstimulation of the paramedian pontine reticular formation. If, as current models of the saccadic system suggest, a copy of the motor command is used as a feedback signal of eye position, failure to compensate for stimulation-induced movements would indicate that stimulation occurred at a site beyond the point from which the eye position signal was derived. 2. Animals compensated for perturbations of eye position induced by stimulation of most pontine sites by making saccades that directed gaze to the position of the visual target. With stimulation at other pontine sites, compensatory saccades did not occur. 3. Pontine stimulation sometimes triggered, prematurely, impending visually directed saccades. The direction and amplitude of the premature movement depended upon the location of the briefly presented visual target. The amplitude of the premature movement was also a function of the interval between the stimulation train and the impending saccade. These data suggest that input signals for the horizontal and vertical pulse/step generators develop gradually during the presaccadic interval. Saccade trigger signals need to be delayed until the formation of these signals is completed. 4. The implications of these findings for models of the saccadic system are discussed. Robinson's local feedback model of the saccadic system can explain compensation for pontine stimulation-induced changes in eye position but cannot easily account for the failure to compensate for perturbations in eye position produced by stimulation at other sites. Modified versions of Robinson's model, which assume that the input signal to the pulse/step generator is the desired displacement of the eye, can account for both compensation and the failure to compensate since two separate neural integrators are employed. However, these models ignore kinematic arguments that commands to the extraocular muscles must specify the absolute position of the eye in the orbit rather than a relative movement from a previous position.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005133 Eye Movements Voluntary or reflex-controlled movements of the eye. Eye Movement,Movement, Eye,Movements, Eye
D000010 Abducens Nerve The 6th cranial nerve which originates in the ABDUCENS NUCLEUS of the PONS and sends motor fibers to the lateral rectus muscles of the EYE. Damage to the nerve or its nucleus disrupts horizontal eye movement control. Cranial Nerve VI,Sixth Cranial Nerve,Abducent Nerve,Nerve VI,Nervus Abducens,Abducen, Nervus,Abducens, Nervus,Abducent Nerves,Cranial Nerve VIs,Cranial Nerve, Sixth,Nerve VI, Cranial,Nerve VIs,Nerve VIs, Cranial,Nerve, Abducens,Nerve, Abducent,Nerve, Sixth Cranial,Nerves, Sixth Cranial,Nervus Abducen,Sixth Cranial Nerves
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012438 Saccades An abrupt voluntary shift in ocular fixation from one point to another, as occurs in reading. Pursuit, Saccadic,Saccadic Eye Movements,Eye Movement, Saccadic,Eye Movements, Saccadic,Movement, Saccadic Eye,Movements, Saccadic Eye,Pursuits, Saccadic,Saccade,Saccadic Eye Movement,Saccadic Pursuit,Saccadic Pursuits

Related Publications

D L Sparks, and L E Mays, and J D Porter
January 1987, Vision research,
D L Sparks, and L E Mays, and J D Porter
January 1976, Vision research,
D L Sparks, and L E Mays, and J D Porter
January 1981, Experimental brain research,
D L Sparks, and L E Mays, and J D Porter
May 1974, Brain research,
D L Sparks, and L E Mays, and J D Porter
January 1973, Journal de physiologie,
D L Sparks, and L E Mays, and J D Porter
January 2004, Progress in brain research,
D L Sparks, and L E Mays, and J D Porter
January 1984, Annals of the New York Academy of Sciences,
D L Sparks, and L E Mays, and J D Porter
January 1993, Japanese journal of ophthalmology,
Copied contents to your clipboard!