The receptive-field spatial structure of cat retinal Y cells. 1987

C Enroth-Cugell, and A W Freeman
Biomedical Engineering Division, Northwestern University, Evanston, IL 60201.

1. Y-type ganglion cells in the cat's retina were stimulated with bars of light and grating patterns at photopic luminances. Stimuli were stationary, and luminance at each point was varied sinusoidally in time at 2 Hz. Impulse rates were recorded from single cells. 2. When the stimulus was a narrow bar of light, the impulse rate approached a sinusoidal function of time as contrast was reduced. The linear behaviour of each cell was therefore characterized by taking the limit of response parameters as contrast approached zero. 3. The ratio of surround strength to centre strength varied widely between cells but the two strengths were approximately equal on average. The difference between surround phase and centre phase averaged 168 deg. 4. As contrast increased, responses became rectified. Rectifier output was well described by a power law of stimulus amplitude, where the power was usually 1.4 or 1.5. 5. Response phase advanced with increasing contrast, and at high response amplitudes grew less than proportionally with contrast. These effects were assumed due to the contrast gain control described by Shapley & Victor (1978). 6. Gratings in which luminance varied sinusoidally with distance were used to determine Y cell spatial resolution. The second-harmonic amplitude of the response diminished rapidly with increasing spatial frequency: the radius of the best-fitting Gaussian mechanism was about 0.25 deg for a cell at 10 deg eccentricity. 7. This spatial resolution is close to the linear resolution of X cells as determined by Linsenmeier, Frishman, Jakiela & Enroth-Cugell (1982). 8. A receptive field model incorporating both linear and non-linear elements is described. The model consists of an array of subunit pathways, each of which has a centre-surround organization followed by a rectifier; a pool weights and sums subunit outputs, and signals are then passed through a contrast gain control. 9. The model accounts qualitatively for the over-all centre-surround organization of Y cell linear responses, the dependence of frequency-doubled responses on spatial frequency, and impulse rate as a function of time for a variety of bar and grating stimuli.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell

Related Publications

C Enroth-Cugell, and A W Freeman
January 1993, Visual neuroscience,
C Enroth-Cugell, and A W Freeman
August 1979, The Journal of general physiology,
C Enroth-Cugell, and A W Freeman
January 1969, Pflugers Archiv : European journal of physiology,
C Enroth-Cugell, and A W Freeman
June 1991, Visual neuroscience,
C Enroth-Cugell, and A W Freeman
October 1979, Experimental brain research,
C Enroth-Cugell, and A W Freeman
September 2011, Visual neuroscience,
C Enroth-Cugell, and A W Freeman
January 1969, Pflugers Archiv : European journal of physiology,
C Enroth-Cugell, and A W Freeman
January 1995, Visual neuroscience,
Copied contents to your clipboard!