Flow-dependent rheological properties of blood in capillaries. 1987

T W Secomb
Department of Physiology, University of Arizona, Tucson 85724.

Velocity-dependent flow of human red blood cells in capillaries with inside diameters of 4 to 8 micron is described theoretically. Cells are assumed to flow in single file, with axisymmetric shapes. Plasma flow in the gaps between cells and vessel walls is described by lubrication theory. The model takes into account the elastic properties of red cell membrane, including its responses to shear and bending. Cell shape is computed numerically as a function of tube diameter and cell velocity over the range 0.001 to 10 cm/sec. Relative apparent viscosity and dynamic hematocrit reduction (Fahraeus effect) are also computed. Since effects of interactions between cells are neglected, the Fahraeus effect is independent of hematocrit, while viscosity varies linearly with hematocrit. At moderate or high cell velocities, about 0.1 cm/sec or more, cell shapes and rheological parameters approach flow-independent limits. At lower velocities, cells broaden as a result of membrane shear and bending resistance and approach the walls more closely. Consequently, apparent viscosity increases with decreasing flow rate. Predicted values are in agreement with in vitro experimental determinations. Flow cessation is not predicted to occur in uniform tubes at positive driving pressures. Elastic deformational energies associated with red cell shapes are computed, leading to estimates of the pressure difference required to drive red cells past typical irregularities in capillary lumen cross sections. The hindrance to flow resulting from such structural irregularities represents a potential rheological mechanism for cessation of capillary flow at very low driving pressures.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D001790 Blood Physiological Phenomena Physiological processes and properties of the BLOOD. Blood Physiologic Processes,Blood Physiological Processes,Blood Physiology,Blood Physiological Concepts,Blood Physiological Phenomenon,Physiology, Blood,Blood Physiological Concept,Blood Physiological Phenomenas,Concept, Blood Physiological,Concepts, Blood Physiological,Phenomena, Blood Physiological,Phenomenon, Blood Physiological,Physiologic Processes, Blood,Physiological Concept, Blood,Physiological Concepts, Blood,Physiological Phenomenon, Blood,Processes, Blood Physiologic,Processes, Blood Physiological
D001809 Blood Viscosity The internal resistance of the BLOOD to shear forces. The in vitro measure of whole blood viscosity is of limited clinical utility because it bears little relationship to the actual viscosity within the circulation, but an increase in the viscosity of circulating blood can contribute to morbidity in patients suffering from disorders such as SICKLE CELL ANEMIA and POLYCYTHEMIA. Blood Viscosities,Viscosities, Blood,Viscosity, Blood
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D004907 Erythrocyte Deformability Ability of ERYTHROCYTES to change shape as they pass through narrow spaces, such as the microvasculature. Erythrocyte Filterability,Deformability, Erythrocyte,Filterability, Erythrocyte
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012212 Rheology The study of the deformation and flow of matter, usually liquids or fluids, and of the plastic flow of solids. The concept covers consistency, dilatancy, liquefaction, resistance to flow, shearing, thixotrophy, and VISCOSITY. Flowmetry,Velocimetry,Velocimetries

Related Publications

T W Secomb
June 1970, Klinische Wochenschrift,
T W Secomb
January 1973, Microvascular research,
T W Secomb
January 2007, Indian journal of experimental biology,
T W Secomb
January 1990, Monographs on atherosclerosis,
T W Secomb
March 1969, Helvetica medica acta,
T W Secomb
January 1970, Biorheology,
T W Secomb
May 1984, Vnitrni lekarstvi,
T W Secomb
July 1968, Physics in medicine and biology,
Copied contents to your clipboard!