Delta-9 tetrahydrocannabinol (THC) effects on the cortisol stress response in bovine granulosa cells. 2023

Jaustin Dufour, and Reem Sabry, and Jibran Y Khokhar, and Laura A Favetta
Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.

Maternal stress can result in changes in the hypothalamic-pituitary-adrenal (HPA) axis and lead to stress-related behaviours in offspring. Under physiological conditions, delta-9 tetrahydrocannabinol (THC) appears to be detrimental for fertility. However, cannabis is also commonly used for stress-relief. THC acts on the endocannabinoid receptors in granulosa cells (GCs), which affect oocyte competency. The objective of this study was to evaluate the effects of THC on in vitro bovine granulosa cell viability, apoptosis, and stress response pathway. GCs were cultured in vitro in the presence of clinically relevant therapeutic and recreational plasma doses of THC. Cortisol doses reflecting normal and elevated plasma levels were used to evaluate the effects of THC under induced stress in vitro. No effect of THC was observed on cell viability or apoptosis. High and low cortisol concentrations caused significant increases in 11β-HSD1 mRNA expression (n = 6, p < 0.0001). Interestingly, when combined with high [THC], there was a significant decrease in 11β-HSD1 expression compared to high and low cortisol treatments alone (p < 0.001, p < 0.05). GR expression was unaffected by cortisol treatments, and low [THC] treatment maintained increased expression in the presence of high and low cortisol treatments (n = 6, p < 0.01, p < 0.0001). Our findings represent a foundation to obtain useful data for evaluating THC potential therapeutic benefit.

UI MeSH Term Description Entries
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005260 Female Females
D006107 Granulosa Cells Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH). Cell, Granulosa,Cells, Granulosa,Granulosa Cell
D006854 Hydrocortisone The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Cortef,Cortisol,Pregn-4-ene-3,20-dione, 11,17,21-trihydroxy-, (11beta)-,11-Epicortisol,Cortifair,Cortril,Epicortisol,Hydrocortisone, (11 alpha)-Isomer,Hydrocortisone, (9 beta,10 alpha,11 alpha)-Isomer,11 Epicortisol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013759 Dronabinol A psychoactive compound extracted from the resin of Cannabis sativa (marihuana, hashish). The isomer delta-9-tetrahydrocannabinol (THC) is considered the most active form, producing characteristic mood and perceptual changes associated with this compound. THC,Tetrahydrocannabinol,delta(9)-THC,9-ene-Tetrahydrocannabinol,Marinol,Tetrahydrocannabinol, (6a-trans)-Isomer,Tetrahydrocannabinol, (6aR-cis)-Isomer,Tetrahydrocannabinol, (6aS-cis)-Isomer,Tetrahydrocannabinol, Trans-(+-)-Isomer,Tetrahydrocannabinol, Trans-Isomer,delta(1)-THC,delta(1)-Tetrahydrocannabinol,delta(9)-Tetrahydrocannabinol,9 ene Tetrahydrocannabinol,Tetrahydrocannabinol, Trans Isomer
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D043205 11-beta-Hydroxysteroid Dehydrogenase Type 1 A low-affinity 11 beta-hydroxysteroid dehydrogenase found in a variety of tissues, most notably in LIVER; LUNG; ADIPOSE TISSUE; vascular tissue; OVARY; and the CENTRAL NERVOUS SYSTEM. The enzyme acts reversibly and can use either NAD or NADP as cofactors. 11 beta-Hydroxysteroid Dehydrogenase Type 1,11beta-HSD1,11beta-HSD1 Reductase,11beta-Hydroxysteroid Dehydrogenase Type 1,11beta HSD1 Reductase,11beta Hydroxysteroid Dehydrogenase Type 1

Related Publications

Jaustin Dufour, and Reem Sabry, and Jibran Y Khokhar, and Laura A Favetta
April 2020, Cellular immunology,
Jaustin Dufour, and Reem Sabry, and Jibran Y Khokhar, and Laura A Favetta
September 2004, Toxicon : official journal of the International Society on Toxinology,
Jaustin Dufour, and Reem Sabry, and Jibran Y Khokhar, and Laura A Favetta
June 1980, The New England journal of medicine,
Jaustin Dufour, and Reem Sabry, and Jibran Y Khokhar, and Laura A Favetta
June 1980, The New England journal of medicine,
Jaustin Dufour, and Reem Sabry, and Jibran Y Khokhar, and Laura A Favetta
June 1980, The New England journal of medicine,
Jaustin Dufour, and Reem Sabry, and Jibran Y Khokhar, and Laura A Favetta
March 2022, The International journal on drug policy,
Jaustin Dufour, and Reem Sabry, and Jibran Y Khokhar, and Laura A Favetta
July 2021, International journal of molecular sciences,
Jaustin Dufour, and Reem Sabry, and Jibran Y Khokhar, and Laura A Favetta
March 1971, The Journal of pharmacy and pharmacology,
Jaustin Dufour, and Reem Sabry, and Jibran Y Khokhar, and Laura A Favetta
September 1978, Experientia,
Jaustin Dufour, and Reem Sabry, and Jibran Y Khokhar, and Laura A Favetta
January 1978, Advances in the biosciences,
Copied contents to your clipboard!