[Nonenzymatic incorporation of prostaglandin A1 into phospholipids in rat liver microsomes]. 1987

V I Kulikov, and S M Levachev

The incorporation of [5,6(n)-3H]prostaglandin A1 (PGA1) and [1-14C]oleic acid into membrane phospholipids of rat liver microsomes was studied. It was shown that PGA1 is incorporated into phospholipids in a much lesser degree than oleic acid. PGA1 is incorporated into phosphatidylethanolamine and, in a lesser degree, into phosphatidylcholine and phosphatidylinositol + phosphatidylserine. The exogenous cofactors of fatty acid acylation (ATP, CoA, Mg2+) exert no marked influence on the incorporation of PGA1 into the phospholipids. PGA1 interacts with isolated rat liver phospholipids; the PGA1-phospholipid conjugate formed is not destroyed in the course of one- or two-dimensional thin-layer chromatography. On the other hand, PGA1 binding to unsaturated phosphatidylcholines is strictly dependent on the phospholipid oxidation index. It is concluded that PGA1 incorporation into rat liver phospholipids is a result of interaction of PGA1 with peroxidized phospholipids.

UI MeSH Term Description Entries
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009829 Oleic Acids A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon. Octadecenoic Acids,Acids, Octadecenoic,Acids, Oleic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011454 Prostaglandins A (13E,15S)-15-Hydroxy-9-oxoprosta-10,13-dien-1-oic acid (PGA(1)); (5Z,13E,15S)-15-hydroxy-9-oxoprosta-5,10,13-trien-1-oic acid (PGA(2)); (5Z,13E,15S,17Z)-15-hydroxy-9-oxoprosta-5,10,13,17-tetraen-1-oic acid (PGA(3)). A group of naturally occurring secondary prostaglandins derived from PGE; PGA(1) and PGA(2) as well as their 19-hydroxy derivatives are found in many organs and tissues. PGA
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D006900 Hydroxylation Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed) Hydroxylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

V I Kulikov, and S M Levachev
January 1985, Neurochemistry international,
V I Kulikov, and S M Levachev
October 1967, Biochemical and biophysical research communications,
V I Kulikov, and S M Levachev
December 1982, The Journal of biological chemistry,
V I Kulikov, and S M Levachev
July 1956, Biochimica et biophysica acta,
V I Kulikov, and S M Levachev
May 1961, The Biochemical journal,
V I Kulikov, and S M Levachev
August 1982, Biochemical medicine,
V I Kulikov, and S M Levachev
November 1979, Biochimica et biophysica acta,
V I Kulikov, and S M Levachev
January 1982, Revista espanola de fisiologia,
Copied contents to your clipboard!