Neuronal colocalization of peptides, catecholamines, and catecholamine-synthesizing enzymes in guinea pig paracervical ganglia. 1987

J L Morris, and I L Gibbins
Department of Anatomy and Histology, Flinders University of South Australia, Bedford Park.

The patterns of colocalization of neuropeptides, catecholamines, and catecholamine-synthesizing enzymes were examined in principal neurons and nerve terminals in guinea pig paracervical ganglia using a double-labeling immunohistochemical procedure. A small proportion of nerve cell bodies (less than 10%) had the characteristics of catecholamine-synthesizing neurons and presumably were noradrenergic. Another 50% of the nerve cell bodies contained immunoreactivity (IR) to dopamine-beta-hydroxylase (DBH), but did not have any other characteristics of noradrenergic neurons; they did not contain detectable catecholamines, or IR to dopa decarboxylase (DDC) or tyrosine (TH) hydroxylase, nor did they take up exogenous catecholamines. Half of the catecholamine neurons had neuropeptide Y (NPY)-IR, and a small number (0.5% total neurons) had somatostatin (Som)-IR. Most of the non-noradrenergic neurons with DBH-IR (40-50% total neurons) contained IR for dynorphin (Dyn), NPY, and vasoactive intestinal peptide (VIP), and about half of them (20-25% total) also contained Som-IR. Ten to twenty percent of neurons contained IR to Som, but not to any other antigen examined here. Nerve terminals with substance P (SP)-IR or enkephalin (Enk)-IR were prominent in all ganglia. SP-IR fibers formed dense baskets only around those neurons with DBH/Dyn/NPY/VIP (+/- Som)-IR, while fibers with very bright Enk-IR were associated selectively with those neurons with Som-IR alone. In addition, most TH-IR nerve cell bodies were surrounded by NPY-IR varicose nerve fibers. In conclusion, this analysis of combinations of peptides and enzymes contained in principal neurons of the paracervical ganglia allows us to identify as many as 11 different neuron populations. The functional significance of the presence of the same neuropeptide (e.g., NPY) in different neuron populations is as yet unknown. Some of these classes of neurons are associated specifically with immunohistochemically distinct types of presynaptic nerve fibers, which suggests that different immunohistochemically defined classes of neurons represent different functional pathways.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D005260 Female Females
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J L Morris, and I L Gibbins
September 1990, Cell and tissue research,
J L Morris, and I L Gibbins
August 1973, Horumon to rinsho. Clinical endocrinology,
J L Morris, and I L Gibbins
August 1981, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
J L Morris, and I L Gibbins
December 1978, Clinical science and molecular medicine. Supplement,
J L Morris, and I L Gibbins
January 1974, Journal of psychiatric research,
J L Morris, and I L Gibbins
January 1990, Neurochemistry international,
Copied contents to your clipboard!