Area method for the estimation of partition coefficients for physiological pharmacokinetic models. 1987

J M Gallo, and F C Lam, and D G Perrier
Department of Pharmacy, University of Otago, Dunedin, New Zealand.

A new technique, the area method, is derived for the determination of partition coefficients for both blood-flow limited and membrane limited physiological pharmacokinetic models. This method was compared to a standard technique by Monte Carlo simulation. Partition coefficients were calculated for the blood-flow limited case for both eliminating and noneliminating organs. It was found that the area method compared favorably to a standard technique and was less prone to error. This may be attributed to the more subjective interpretation as to which data points are included in the terminal phase, since the standard method relies on the accurate determination of the terminal slope for the calculation of partition coefficients. Both methods are satisfactory for the calculation of partition coefficients with the area method being more accurate and precise.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010423 Pentazocine The first mixed agonist-antagonist analgesic to be marketed. It is an agonist at the kappa and sigma opioid receptors and has a weak antagonist action at the mu receptor. (From AMA Drug Evaluations Annual, 1991, p97) Fortral,Lexir,Pentazocine Hydrochloride,Pentazocine Lactate,Talwin,Hydrochloride, Pentazocine,Lactate, Pentazocine
D010599 Pharmacokinetics Dynamic and kinetic mechanisms of exogenous chemical DRUG LIBERATION; ABSORPTION; BIOLOGICAL TRANSPORT; TISSUE DISTRIBUTION; BIOTRANSFORMATION; elimination; and DRUG TOXICITY as a function of dosage, and rate of METABOLISM. LADMER, ADME and ADMET are abbreviations for liberation, absorption, distribution, metabolism, elimination, and toxicology. ADME,ADME-Tox,ADMET,Absorption, Distribution, Metabolism, Elimination, and Toxicology,Absorption, Distribution, Metabolism, and Elimination,Drug Kinetics,Kinetics, Drug,LADMER,Liberation, Absorption, Distribution, Metabolism, Elimination, and Response
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities
D013806 Theophylline A methyl xanthine derivative from tea with diuretic, smooth muscle relaxant, bronchial dilation, cardiac and central nervous system stimulant activities. Theophylline inhibits the 3',5'-CYCLIC NUCLEOTIDE PHOSPHODIESTERASE that degrades CYCLIC AMP thus potentiates the actions of agents that act through ADENYLYL CYCLASES and cyclic AMP. 1,3-Dimethylxanthine,3,7-Dihydro-1,3-dimethyl-1H-purine-2,6-dione,Accurbron,Aerobin,Aerolate,Afonilum Retard,Aquaphyllin,Armophylline,Bronchoparat,Bronkodyl,Constant-T,Elixophyllin,Euphylong,Glycine Theophyllinate,Lodrane,Monospan,Nuelin,Nuelin S.A.,Quibron T-SR,Slo-Phyllin,Somophyllin-T,Sustaire,Synophylate,Theo Von Ct,Theo-24,Theo-Dur,Theobid,Theocin,Theoconfin Continuous,Theodur,Theolair,Theolix,Theon,Theonite,Theopek,Theophylline Anhydrous,Theophylline Sodium Glycinate,Theospan,Theostat,Theovent,Uniphyl,Uniphyllin,Uniphylline,1,3 Dimethylxanthine,Anhydrous, Theophylline,Constant T,ConstantT,Ct, Theo Von,Glycinate, Theophylline Sodium,Quibron T SR,Quibron TSR,Slo Phyllin,SloPhyllin,Sodium Glycinate, Theophylline,Somophyllin T,SomophyllinT,Theo 24,Theo Dur,Theo24,Theophyllinate, Glycine,Von Ct, Theo

Related Publications

J M Gallo, and F C Lam, and D G Perrier
February 1979, Journal of pharmacokinetics and biopharmaceutics,
J M Gallo, and F C Lam, and D G Perrier
July 2002, Journal of toxicology and environmental health. Part A,
J M Gallo, and F C Lam, and D G Perrier
March 1992, Journal of pharmaceutical sciences,
J M Gallo, and F C Lam, and D G Perrier
July 1992, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
J M Gallo, and F C Lam, and D G Perrier
April 1985, Die Pharmazie,
J M Gallo, and F C Lam, and D G Perrier
January 1991, Journal of chromatography,
J M Gallo, and F C Lam, and D G Perrier
November 2000, Pharmaceutical research,
J M Gallo, and F C Lam, and D G Perrier
December 1982, Journal of pharmacokinetics and biopharmaceutics,
J M Gallo, and F C Lam, and D G Perrier
August 2005, Journal of separation science,
Copied contents to your clipboard!