An important part of pharmacokinetic research is fitting models to observed data and estimating the parameters in the model. In general, parameter estimation in pharmacokinetics is a subset of the general problem of nonlinear regression or parameter estimation in nonlinear regression models. The same criteria, algorithms, and software used in other areas of science have been used in pharmacokinetics. Nonlinear modeling is a difficult mathematical and statistical task, often presenting problems. Any proposed new tool is of interest, and extended least squares (ELS) has been suggested as being better than the methods usually used. This suggestion and the evidence supporting it are examined; additional simulations are reported. With the evidence presently available, ELS does not seem to be superior to traditional least squares methods.